
Occopus
Release v1.10

József Kovács, Zoltán Farkas, Márk Emődi

Sep 05, 2022

USER GUIDE

1 What is Occopus? 3

2 Acknowledgement 5
2.1 Concept . 5
2.2 Features . 6
2.3 Supported Resources . 8

2.3.1 EC2 . 8
2.3.2 Nova . 8
2.3.3 Azure . 8
2.3.4 CloudBroker . 8
2.3.5 Docker . 9
2.3.6 CloudSigma . 9

2.4 Setup . 9
2.4.1 Installation . 9
2.4.2 Configuration . 10
2.4.3 Authentication . 10

2.5 Composing an infrastructure . 13
2.5.1 Infrastructure Description . 13
2.5.2 Node Description . 14
2.5.3 Node Definition . 15

2.5.3.1 Resource . 15
2.5.3.2 Collecting Resource Attributes . 20
2.5.3.3 Contextualisation . 43
2.5.3.4 Contextualisation variables and methods . 44
2.5.3.5 Config management . 46
2.5.3.6 Health-check . 46
2.5.3.7 Multiple node implementations . 48
2.5.3.8 Examples . 49

2.6 Usage . 49
2.6.1 Command line tools . 49

2.6.1.1 occopus-build . 49
2.6.1.2 occopus-destroy . 50
2.6.1.3 occopus-maintain . 50
2.6.1.4 occopus-scale . 51
2.6.1.5 occopus-import . 51
2.6.1.6 occopus-rest-service . 52

2.6.2 REST API . 52
2.6.2.1 POST /infrastructures/ . 52
2.6.2.2 GET /infrastructures/ . 53
2.6.2.3 POST /infrastructures/(infraid)/scaledown/(nodename)/(nodeid) 53

i

2.6.2.4 POST /infrastructures/(infraid)/scaleup/(nodename)/(int: count) 53
2.6.2.5 POST /infrastructures/(infraid)/scaleto/(nodename)/(int: count) 54
2.6.2.6 POST /infrastructures/(infraid)/scaledown/(nodename) 54
2.6.2.7 POST /infrastructures/(infraid)/scaleup/(nodename) 55
2.6.2.8 POST /infrastructures/(infraid)/attach . 55
2.6.2.9 POST /infrastructures/(infraid)/detach . 55
2.6.2.10 POST /infrastructures/(infraid)/notify . 56
2.6.2.11 GET /infrastructures/(infraid) . 56
2.6.2.12 DELETE /infrastructures/(infraid) . 56

2.6.3 Python API . 57
2.7 Release Notes . 57

2.7.1 v1.10 (30 Nov 2021) . 57
2.7.2 v1.9 (25 May 2021) . 57
2.7.3 v1.8 (17 Aug 2020) . 57
2.7.4 v1.7 (30 Apr 2020) . 57
2.7.5 v1.6 (05 Apr 2019) . 58
2.7.6 v1.5 (23 May 2017) . 58
2.7.7 v1.4 (27 March 2017) . 58
2.7.8 v1.3 (09 January 2017) . 59
2.7.9 v1.2 (11 August 2016) . 59
2.7.10 v1.1 (5 June 2016) . 59
2.7.11 v1.0 (6 April 2016) . 59
2.7.12 v0.3.0 (15 Jan 2016) . 60
2.7.13 v0.2.1 (10 Nov 2015) . 60
2.7.14 v0.2.0 (4 Nov 2015) . 60

2.8 Contact Us . 60
2.9 Resource plugins . 61

2.9.1 EC2-Helloworld . 61
2.9.2 EC2-Ping . 63
2.9.3 Nova-Helloworld . 67
2.9.4 Nova-Ping . 69
2.9.5 Azure-Helloworld . 73
2.9.6 Azure-Ping . 76
2.9.7 Azure-ACI-Helloworld . 79
2.9.8 Azure-ACI-Nginx . 82
2.9.9 Docker-Helloworld . 84
2.9.10 Docker-Ping . 86
2.9.11 CloudSigma-Helloworld . 89
2.9.12 CloudSigma-Ping . 92
2.9.13 CloudBroker-Helloworld . 95
2.9.14 CloudBroker-Ping . 97

2.10 Config manager plugins . 101
2.10.1 Chef-Apache2 . 101
2.10.2 Chef-Wordpress . 104
2.10.3 PuppetSolo-Wordpress . 108

2.11 Building clusters . 110
2.11.1 Docker-Swarm cluster . 110
2.11.2 Kubernetes cluster . 112
2.11.3 Slurm cluster . 117
2.11.4 DataAvenue cluster . 121
2.11.5 CQueue cluster . 126

2.12 Autoscaling infrastructures . 131
2.12.1 Autoscaling-DataAvenue . 131
2.12.2 Autoscaling-Hadoop cluster . 138

ii

2.13 Flowbster . 143
2.13.1 Autodock vina . 143

2.14 Big Data and AI applications . 147
2.14.1 Apache Hadoop cluster . 147
2.14.2 Apache Spark cluster with RStudio Stack . 150
2.14.3 Apache Spark cluster with Jupyter notebook and PySpark 156
2.14.4 TensorFlow and Keras with Jupyter Notebook Stack . 160
2.14.5 TensorFlow 2 with JupyterLab Stack using NVIDIA GPU card 163
2.14.6 JupyterLab . 165

2.15 Build environment . 170
2.16 Packaging and deployment . 171

2.16.1 Managing the internal PyPI server . 171
2.16.2 Dependency Manifests . 172
2.16.3 Creating Packages . 172
2.16.4 Vendoring Packages . 172
2.16.5 Packages (in a topological order) . 173

2.17 API . 175
2.17.1 Basic features for Occopus-based applications . 175

2.17.1.1 Occopus Configuration . 175
2.17.2 Infrastructure Manager . 176

2.18 Develop documentation . 177
2.18.1 Creating documentation environment locally . 177
2.18.2 Visualize local build . 178
2.18.3 Helper scripts . 178

2.18.3.1 createTarFileFromTutorials.sh . 178
2.18.3.2 updateAbsoluteGithubLinksToChangeBranch.sh 178

2.18.4 Read the Docs build . 179

iii

iv

Occopus, Release v1.10

This document is envisaged to introduce the abilities of Occopus, a cloud orchestrator framework developed at SZTAKI
(Hungary) to create and manage flexible computing infrastructures and services in a single or multi cloud system.

How to start?

Get started in minutes. Follow the Installation guide!

USER GUIDE 1

Occopus, Release v1.10

2 USER GUIDE

CHAPTER

ONE

WHAT IS OCCOPUS?

Occopus is an easy-to-use hybrid cloud orchestration tool. It is a framework that provides features for configuring and
orchestrating distributed applications (so called virtual infrastructures) on single or multi cloud systems. Occopus can
be used by application developers and devops to create and deploy complex virtual infrastructures as well as to manage
them at deployment time and at runtime.

If you use Occopus, please cite at least one of the fol-
lowing publications:

• Kovács, J. & Kacsuk, P. Occopus: a Multi-
Cloud Orchestrator to Deploy and Manage Com-
plex Scientific Infrastructures J Grid Comput-
ing (2018) 16: 19. https://doi.org/10.1007/
s10723-017-9421-3

• Lovas, R ; Nagy, E ; Kovacs, J Cloud ag-
nostic Big Data platform focusing on scalabil-
ity and cost-efficiency ADVANCES IN ENGI-
NEERING SOFTWARE 125 pp. 167-177. ,
11 p. (2018) http://dx.doi.org/10.1016%2Fj.
advengsoft.2018.05.002

• József Kovács, Péter Kacsuk, Márk Emődi,
Deploying Docker Swarm cluster on hybrid
clouds using Occopus, Advances in Engineer-
ing Software, Volume 125, 2018, Pages 136-
145, ISSN 0965-9978, https://doi.org/10.1016/j.
advengsoft.2018.08.001.

• Kacsuk, P., Kovács, J. & Farkas, Z. The Flowb-
ster Cloud-Oriented Workflow System to Process
Large Scientific Data Sets J Grid Computing (2018) 16: 55. https://doi.org/10.1007/s10723-017-9420-4

• Lovas, R ; Farkas, A ; Marosi, A Cs ; Acs, S ; Ko-
vacs, J ; Szaloki, A ; Kadar, B Orchestrated Plat-
form for Cyber-Physical Systems COMPLEX-
ITY 2018 pp. 1-16. Paper: 8281079 , 16
p. (2018) http://dx.doi.org/10.1155%2F2018%
2F8281079

3

https://doi.org/10.1007/s10723-017-9421-3
https://doi.org/10.1007/s10723-017-9421-3
http://dx.doi.org/10.1016%2Fj.advengsoft.2018.05.002
http://dx.doi.org/10.1016%2Fj.advengsoft.2018.05.002
https://doi.org/10.1016/j.advengsoft.2018.08.001
https://doi.org/10.1016/j.advengsoft.2018.08.001
https://doi.org/10.1007/s10723-017-9420-4
http://dx.doi.org/10.1155%2F2018%2F8281079
http://dx.doi.org/10.1155%2F2018%2F8281079

Occopus, Release v1.10

4 Chapter 1. What is Occopus?

CHAPTER

TWO

ACKNOWLEDGEMENT

This development has been supported by the National Development Agency, Hungary under contract no. KMR12-
1-2012-0119 (CLAKK); by the European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no. 283481 (SCI-BUS) and 608886 (CloudSME); and by the European Union Horizon 2020 research and
innovation programme under grant agreement no. 731574 (COLA) and no. 768892 (CloudiFacturing). We thank for
the usage of MTA Cloud that significantly helped us achieve the results published here.

2.1 Concept

Occopus is an easy-to-use hybrid cloud orchestration tool. It is a framework that provides features for configuring and
orchestrating distributed applications (so called virtual infrastructures) on single or multi cloud systems. Occopus can
be used by application developers and devops to create and deploy complex virtual infrastructures as well as to manage
them at deployment time and at runtime.

It has many similarities with HEAT, Juju, etc. Its main advantage that it is cloud technology neutral, open source and
easily extendable. Occopus works based on an infrastructure description that describes the services to be deployed in
the cloud (or other type of resource) and the order of their deployment. Occopus deploys the services in the cloud
according to deployment order specified in the description.

Occopus not only deploys the services but checks their availability, accessibility i.e. their health before deploying the
next service. Furthermore, the description can contain contextualisation information for every deployable service and
based on that information Occopus carries out contextualisation for the deployed services. As a result after contex-
tualisation the services can call each other, i.e. they can collaborate to realize a higher level service called as virtual
infrastructure.

Occopus can be used in three different ways:

1. Desktop software (i.e. as command line util): In this case virtual infrastructure developers can run Occopus on
their desktop machine and they give the infrastructure description as input to Occopus together with their creden-
tials to the target cloud where they want to deploy theinfrastructure. Based on the description Occopus deploys
and activates the infrastructure in the cloud and then exits. Then any potential user can use the infrastructure that
were built by Occopus in the cloud(s).

2. REST API: Occopus can expose its functionalities through a web service with RESTful interface. The function-
alities like deployment, management, destroy, etc. can be realized through REST calls.

3. Library providing the Occopus API: In this case infrastructure developers can create a program that deploys
the infrastructure in the cloud by calling the Occopus APIs. APIs provide a more fine-tuned controlling of
the deployment, and management process while further functionalities can be added to the extendable Occopus
architecture.

5

https://cloud.mta.hu

Occopus, Release v1.10

2.2 Features

Wide range of supported resources

Occopus supports a wide variety of interfaces for allocating cloud or container resources. Some of the most
widespread supported interfaces are ec2, nova, docker and Azure. The list of supported interfaces is growing due to
the modular and extensible feature of Occopus.
List of supported technologies

Hybrid cloud support

Occopus can deploy your infrastucture by allocating each node on a different cloud. Multiple type of clouds can be
used within the same infrastructure, therefore we call it hybrid cloud support. It is also possible to let Occopus
dynamically choose between a given list of clouds at deployment time. To use multiple resources, nodes must have
multiple implementations and optionally implementations can be filtered in the infrastructure description.
Resource section of node definition
Infrastructure descriptions

Multiple configuration management support

Occopus can utilise Chef, Cloud-init, pre-defined images, or any combination of these in the same infrastructure.
Occopus has access to various configuration and contextualization methods:

• You can use pre-defined images in the resource section of the node definition

– Resource section of node definition

• You can use cloud-init as a contextualisation tool

– Contextualisation section of node definition

• Occopus supports configuration management tools. Currently, Chef is supported.

– Using Chef in node definition

– Demo infrastructures using chef

Different usage possibilities

Occopus functionalities can be utilised in different ways. First, it provides command-line tools exposing different
functionalities to build, query, update or destroy infrastructures. Second, REST API can be used after Occopus web
service has been launched. Finally, orchestration functionalities can be utilised in your application through the API of
the Occopus python library.
Overview of usage possibilities
Command-line interface
REST interface
Python API

Simple YAML format

6 Chapter 2. Acknowledgement

Occopus, Release v1.10

Occopus uses YAML files for node definitions and infrastructure descriptions, making them simple, human-readable
and easy-to-learn.
Node definitions
Infrastructure descriptions

Schema checking

Both, infra description and node definition files are analysed and validated by Occopus by searching for missing or
invalid sections and attributes. This helps users to avoid creating syntactically wrong descriptor files.

Dynamic reconfiguration

Make changes to your infrastructures on the fly with a single command. Modify the infrastructure description file
the way you want - add and remove nodes, set new paramateres (e.g. scaling) and variables for your nodes and your
infrastructure and modify the dependency graph as you wish. After updating the infrastructure description in the
datastore using occopus-build command, Occopus will automatically reconfigure the nodes of running infrastructures
to match the new definitions.

Health checking

Occopus supports health checking primitives to check if a node is still operating. These primitives are network
availability of the node (ping), checking the connectivity of a certain port (port access), checking the responsiveness
of a web service (url checking) or checking the connectivity of a mysql database (mysql access).
Health checking primitives

Auto healing

Occopus monitors the states of the nodes by applying the primitives configured by health-checking for each node. Once,
a node does not fails on health-checking, it is considered as fail node, Occopus destroys and rebuilds it.

Manual scaling

Scaling up or down any nodes in the infrastructure is supported. Occopus can launch multiple instances of a certain
node, however the infrastructure itself must be built in a way to handle scaling events.
Scaling commands
Scaling limits in node description

Multiple node implementations

Occopus supports defining multiple implementations for a node (type) and utilise different backends, images, tools
and variables in them. You can filter the available implementations in the infrastructure description, and occopus will
select an implementation from the remaining ones.
Multiple node implementations
Node type filtering in infrastructure description

Multiple authenticators

2.2. Features 7

Occopus, Release v1.10

Occopus can handle multiple authenticators during building an infrastructure on multiple resource. Multiple
resources may have different authenticators and authentication procedures. Occopus supports defining authenticators
and selecting one of them for a certain resource. The selection can be based on any parameter of a resource handler,
including name, type, image-id, etc.
Description of authentication

Extensible architecture

Occopus was created with extensibility and flexibility in mind - New modules for resource-handlers, configuration-
managers, additional schema-checker rules or health-checking primitives can easily be implemented and added without
modifying other components.

2.3 Supported Resources

Occopus has an extendible, pluginable architecture for interfacing external tools and services. The actual version
contains four different resource plugin implementations for handling clouds and one for docker containers.

2.3.1 EC2

Occopus can utilise cloud resources supporting the Amazon Elastic Compute Cloud (EC2) interface.

2.3.2 Nova

Occopus has a resource plugin to interface with NOVA API. With this interface OpenStack type cloud systems can be
utilised.

2.3.3 Azure

The Azure and Azure ACI resource plugins of Occopus enables the usage of Azure resources.

2.3.4 CloudBroker

This is a special resource plugin serving resource allocation and program execution on CloudBroker platform operated
by CloudBroker Inc..

Using the CloudBroker plugin you can access all the different cloud types that are supported by CloudBroker platform.
These are:

• Amazon

• CloudSigma

• OpenStack

• OpenNebula

If you want to use clouds via the CloudBroker platform, please, contact the CloudBroker GmbH:

• Email: info@cloudbroker.com

• Web: http://www.cloudbroker.com

8 Chapter 2. Acknowledgement

https://aws.amazon.com/ec2
http://docs.openstack.org
http://www.openstack.org/
https://azure.microsoft.com//
http://cloudbroker.com
mailto:info@cloudbroker.com
http://www.cloudbroker.com

Occopus, Release v1.10

2.3.5 Docker

Occopus has a resource plugin which enables to utilise pure Docker or Swarm resources. With this plugin it is possible
to deploy containers and to combine them into an infrastructure.

2.3.6 CloudSigma

The CloudSigma resource plugin of Occopus enables the usage of CloudSigma resources.

2.4 Setup

2.4.1 Installation

Important: We primarily support Ubuntu operating system. The following instruction steps were tested on Ubuntu
20.04 version.

1. Install a few system-wide packages

Python 3.x, Virtualenv, Redis server for data storage and SSL devel lib for Chef to work

sudo apt update && \
sudo apt install -y python3-pip python3-dev virtualenv redis-server libssl-dev

2. Prepare the environment (you may skip this part to have a system-wide installation, not recommended)

virtualenv -p python3 $HOME/occopus
source $HOME/occopus/bin/activate

3. Deploy all Occopus packages

pip install --no-index --find-links https://pip3.lpds.sztaki.hu/packages OCCO_API

Now, all Occopus packages are deployed under your virtualenv occopus.

4. Optionally, copy your certs under Occopus if you plan to use VOMS authentication against Nova resources

cat /etc/grid-security/certificates/*.pem >> $(python -m requests.certs)

Note: Do not forget to activate your virtualenv before usage!

Note: Please, proceed to the next chapter to continue with configuration!

2.4. Setup 9

http://www.docker.com
https://docs.docker.com/engine/swarm/
https://www.cloudsigma.com/

Occopus, Release v1.10

2.4.2 Configuration

Occopus requires one configuration file containing static parameters and objects to be instantiated when Occopus starts.
The file is occopus_config.yaml.

This file must be specified for Occopus through command line parameters. Alternatively, we recommend to store this
file in $HOME/.occopus directory, so that Occopus will automatically find and use it.

Please, download and save your configuration file:

mkdir -p $HOME/.occopus
curl https://raw.githubusercontent.com/occopus/docs/devel/tutorials/.occopus/occopus_
→˓config.yaml -o $HOME/.occopus/occopus_config.yaml

Occopus uses YAML as a configuration language, mainly for its dynamic properties, and its human readability. The
parsed configuration is a dictionary, containing both static parameters and objects instantiated by the YAML parser.

Note: Please, do not modify the configuration file unless you know what you are doing!

Note: Please, proceed to the next chapter to continue with setting up authentication information!

2.4.3 Authentication

Authentication file

In order to get access to a resource, Occopus requires your credentials to be defined. For this purpose you have to create
a file, auth_data.yaml containing authentication information for each target resource in a structured way.

Once you have your auth_data.yaml file, you must specify it as command line argument for Occopus. A more
convenient (recommended) way is to save this file at $HOME/.occopus/auth_data.yaml so that Occopus will auto-
matically find and use it.

You can download and save your initial authentication file:

mkdir -p $HOME/.occopus
curl https://raw.githubusercontent.com/occopus/docs/devel/tutorials/.occopus/auth_data.
→˓yaml -o $HOME/.occopus/auth_data.yaml

Once you have your initial authentication file, edit and insert your credentials to the appropriate section.

For each different type of resources, you may specify different authentication information, which must fit to the format
required by the resource plugin defined by the type keyword. Here are the formats for the different resource types.

Authentication data formats

For EC2 resources:

resource:
-

type: ec2
auth_data:

accesskey: your_access_key
secretkey: your_secret_key

For nova resources:

10 Chapter 2. Acknowledgement

Occopus, Release v1.10

In case of username/password authentication:

resource:
-

type: nova
auth_data:

username: your_username
password: your_password

In case of application credential based authentication:

resource:
-

type: nova
auth_data:

type: application_credential
id: id_of_the_app_cred
secret: password_of_the_app_cred

In case of VOMS proxy authentication:

resource:
-

type: nova
auth_data:

type: voms
proxy: path_to_your_x509_voms_proxy_file

For azure resources:

resource:
-

type: azure_vm
auth_data:

tenant_id: your_tenant_id
client_id: your_client_id
client_secret: your_client_secret
subscription_id: your_subscription_id

Please consult the Azure Documentation on how to obtain the necessary tenant_id, client_id, client_secret
and subscription_id values, and how to gain proper access for being able to manage Azure virtual machines and
associated resources.

For azure_aci resources:

resource:
-

type: azure_aci
auth_data:

tenant_id: your_tenant_id
client_id: your_client_id
client_secret: your_client_secret
subscription_id: your_subscription_id

Please consult the Azure Documentation on how to obtain the necessary tenant_id, client_id, client_secret
and subscription_id values, and how to gain proper access for being able to manage Azure continer instances and

2.4. Setup 11

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal#get-application-id-and-authentication-key
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal#get-application-id-and-authentication-key

Occopus, Release v1.10

associated resources.

For cloudbroker resources:

resource:
-

type: cloudbroker
auth_data:

email: your@email.com
password: your_password

For cloudsigma resources:

resource:
-

type: cloudsigma
auth_data:

email: your@email.com
password: your_password

For chef config managers:

config_management:
-

type: chef
auth_data:

client_name: name_of_user_on_chef_server
client_key: !text_import

url: file://path_to_the_pem_file_of_cert_for_user

The values for client_name and client_key attributes must be the name of the user that can login to the Chef server
and the public key of that Chef user. This user and its key will be used by Occopus to register the infrastructure before
deployment of nodes starts. As the example shows above, the key can be imported from a separate file, so the path to
the pem file is enough to be specified in the last line.

For multiple resource types:

resource:
-

type: ec2
auth_data:

accesskey: your_access_key
secretkey: your_secret_key

-
type: nova
auth_data:

type: voms
proxy: path_to_your_voms_proxy_file

For multiple resources with different endpoints:

resource:
-

type: ec2
endpoint: my_ec2_endpoint_A

(continues on next page)

12 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

auth_data:
accesskey: your_access_key_for_A
secretkey: your_secret_key_for_A

-
type: ec2
endpoint: my_ec2_endpoint_B
auth_data:

accesskey: your_access_key_for_B
secretkey: your_secret_key_for_B

Note: The authentication file has YAML format. Make sure you are using spaces instead of tabulators for indentation!

2.5 Composing an infrastructure

In order to deploy an infrastructure, Occopus requires

1. description of the infrastructure

2. definition of the individual nodes

The following section explains how the various descriptions must be formatted.

2.5.1 Infrastructure Description

Dependency graph on Node Description-s.

The graph contains the following information:

user_id The identifier of the owner of the infrastructure instance.

infra_name The name of the infrastructure.

nodes List of node.

dependencies List of edge definitions. Each of these can be either

• A pair (2-list) of node references.

• A mapping containing:

connection The pair (2-list) of node references.

mappings List of attribute mappings. Each mapping can be a pair (2-list) of strings
(attribute specifications, dotted strings permitted) or a mapping containing:

attributes The pair of attribute specifications.

synch Whether to synchronize on the availability of the source attribute.

** Anything else that is required by mediating services.

** Anything else that is required by mediating services.

variables

Arbitrary mapping containing infrastructure-wide information. This information is static (not
parsed anywhere). Nodes will inherit these variables, but they may also override them.

2.5. Composing an infrastructure 13

Occopus, Release v1.10

The following example describes a two nodes infrastructure where B depends on A, i.e. B uses the service provided by
A.

user_id: me
infra_name: simple
nodes:

- &A
name: A
type: mysql

- &B
name: B
type: wordpress

dependencies:
- [*B, *A]

2.5.2 Node Description

Abstract description of a node, which identifies a type of node a user may include in an infrastructure. It is an abstract,
resource-independent definition of a class of nodes and can be stored in a repository.

This data structure does not contain information on how it can be instantiated. It rather contains what needs to be
instantiated, and under what conditions. It refers to one or more implementations that can be used to instantiate the
node. These implementations are described with node definition data structures.

To instantiate a node, its implementations are gathered first. Then, they are filtered and one is selected by Occopus
randomly.

name Name of node which uniquely identifies the node inside the infrastructure.

type The type of the node i.e. the node definition to be used when intantiating the node. If node definition
exists for ‘XXX’ then use “type: XXX” to instantiate the implementation of node ‘XXX’.

filter (dict)

filter:
type: ec2
regionname: ROOT
instance_type: m1.small

Optional. Provides filtering among the available implementations of a node definition speci-
fied for ‘type’. The dictionary must define key-value pairs where keywords are originated from
resource section of the node definitions. If unspecified or filtering results more than one imple-
mentations, one will be chosen by Occopus.

scaling (dict)

scaling:
min: 1
max: 3

Optional. Keywords for scaling are ‘’min” and ‘’max”. They specify how many instances of
the node can have minimum (‘’min”) and maximum (‘’max”) in the infrastructure. At startup
‘’min” number of instances of the node will be created. Default and minimal value for ‘’min”
is 1. Default value for ‘’max” equals to ‘’min”. Both values are hardlimits, no modification of
these limits are possible during infrastructure maintenance.

variables Arbitrary mapping containing static node-level information:

14 Chapter 2. Acknowledgement

Occopus, Release v1.10

1. Inherited from the infrastructure.

2. Overridden/specified in the node’s description in the infrastructure description.

The final list of variables is assembled by Occopus.

2.5.3 Node Definition

Describes an implementation of a node, a template that is required to instantiate a node.

A node definition consists of 4 different sections:

1. resource Contains the definition of the resource and its attributes, like endpoint, image id, etc. The attributes
to be defined are resource type dependent. There are 5 different resource plugins as mentioned in the Supported
Resources section, each one handles its own required and optional attributes. Possible attributes are defined in
the Resource section.

2. contextualisation Optional. Contains contextualisation information for the node to be instantiated. Possible
attributes are defined in the Contextualisation section.

3. config_management Optional. Describes the configuration manager to be used and its required parameters.
Currently, chef and puppet are supported. Possible attributes are defined in the Config management section.

4. health_check Optional. Can be specified if health of the node can be monitored. Default is ping to check
network access. Possible attributes are defined in the Health check section.

2.5.3.1 Resource

In this section, the attributes (keywords) are listed and explained which can be used for the different resource handlers.

EC2

type: ec2 Selects the ec2 resource handler.

endpoint The endpoint (url) of the ec2 cloud interface.

regionname Region name of for the ec2 cloud interface.

image_id The identifier of the image behind the ec2 cloud to be instantiated to realize a virtual machine.

instance_type The instance type determines the characteristics (CPU, memory, storage, networking)
of the VM created (e.g. m1.small).

key_name Optional. The name of the keypair to assign to the allocated virtual machine.

security_group_ids Optional. The list of security group IDs which should be assigned to the allocated
virtual machine.

subnet_id Optional. The ID of the subnet which should be assigned to the allocated virtual machine.

tags Optional. List of key-value pairs of tags to be registered for the virtual machine.

name Optional. A user-defined name for this resource. Used in logging and can be referred to in the
authentication file to distinguish authentication to be applied among resources having the same type.

2.5. Composing an infrastructure 15

Occopus, Release v1.10

Nova

type: nova Selects the nova resource handler.

endpoint The endpoint (URL) of the OpenStack Identity API service. If the URL includes the API
version (e.g. https://foo.bar:5000/v3/), then the given API version will be used, otherwise
API v3 will be assumed as default.

project_id Specifies the ID of the project to connect to.

region_name Optional. Specifies the name of the region within the project.

user_domain_name Optional. Specifies the name of the user domain. The default value of this attribute
is “Default”.

network_id Optional. Specifies the ID of the network to attach to the virtual machine.

image_id The identifier of the image on the cloud to be instantiated to realize a virtual machine.

flavor_name The type of flavor to be instantiated through nova when realizing this virtual machine.
This value refers to a flavour of the nova cloud. It determines the resources (CPU, memory, storage,
networking) of the node.

volume_size Optional. When set, can be used to tell the nova plugin to create a volume from the image
specified, and boot the VM from the volume created. Value 0 makes OpenStack create a volume
automatically, other values can be used to specify the desired volume size.

volume_persist Optional. Values True or true tell Occopus to keep the volume of the VM after it has
been terminated. The default value of this attribute is false.

server_name Optional. The hostname of the instantiated virtual machine.

key_name Optional. The name of the keypair to be associated to the instance.

security_groups Optional. List of security groups to be associated to the instance.

floating_ip Optional. If defined (with any value), new floating IP address will be allocated and assigned
for the instance.

floating_ip_pool Optional. If defined, also implies floating_ip, and specifies the name of the floating
IP pool that should be used to allocate a new floating IP for the VM.

name Optional. A user-defined name for this resource. Used in logging and can be referred to in the
authentication file to distinguish authentication to be applied among resources having the same type.

tenant_name Deprecated. A container used to group or isolate resources on the cloud behind the nova
interface. If this option is not specified, project_id and user_domain_name must be set.

Azure

type: azure_vm Selects the Azure resource handler.

endpoint The endpoint (url) of the Azure interface, e.g. https://management.azure.com

resource_group The resource group to allocate Azure resources in. You can use a new resource group,
or an existing one. The list of existing resource groups can be queried from the Azure Portal.

location The location where the resources should be allocated, e.g. francecentral. The Azure com-
mand line client can be used to query the list of usable location: az account list-locations
-o table (for usable names, see the “Name” row of the table).

16 Chapter 2. Acknowledgement

https://management.azure.com
https://portal.azure.com/#blade/HubsExtension/BrowseResourceGroups

Occopus, Release v1.10

vm_size The size of the VM to allocate, e.g. Standard_DS1_v2. The Azure command line client can
use used to query the list of available VM sizes: az vm list-sizes --location <location>,
enter the value of the “name” key for the desired VM size in the list.

publisher The image publisher’s name, e.g. Canonical. One can use the Azure command line client to
get the list of images: az vm image list. The output of this command contains the values which
should be used for publisher, offer, sku and version.

offer The published name of the image, e.g. UbuntuServer.

sku The type of the OS, e.g. 18.04.0-LTS.

version The version of the image to use, e.g. latest.

username The name of the admin user to create on the VM. Azure currently has the following restrictions
on the username: must only contain letters, numbers, hyphens, and underscores and may not start
with a hyphen or number, must not include reserved word, is between 1 and 64 characters long.

password Optional. The password for the admin user. If not set, then ssh_key_data must be defined.

ssh_key_data Optional. The public part of the SSH key for the admin user. The content specified here
will be placed into the admin user’s authorized_keys file. If not set, then password must be defined.

server_name Optional. The hostname of the instantiated virtual machine.

vnet_name Optional. Name of the virtual network to use for the VM. If not specified, the Azure resource
plugin will allocate a virtual network.

nic_name Optional. The name of the network interface to use for the VM. If not specified, the Azure
resource plugin will allocate a network interface.

subnet_name Optional. The name of the subnet to use for the VM. If not specified, the Azure resource
plugin will allocate a subnet.

public_ip_needed Optional. If specified with the value True, the Azure resource plugin will allocate a
public IP address for the VM.

Azure ACI

type: azure_aci Selects the Azure ACI (Azure Container Instances) resource handler.

endpoint The endpoint (url) of the Azure interface, e.g. https://management.azure.com

resource_group The resource group to allocate Azure resources in.

location The location where the resources should be allocated, e.g. francecentral.

image The public image to be used from Docker Hub, e.g. bde2020/spark-worker:2.4.5-hadoop2.7.

network_type The type of network to be used. Value “public” allocates a public address for the con-
tainer, whereas value “private” uses a private network. When the value “public” is specified, then
Occopus will allocate an FQDN for the container, which will also be set as the environment variable
_OCCOPUS_ALLOCATED_FQDN.

memory The memory in GB to allocate for the container, e.g. 2.

cpu_cores The number of vCPU cores to allocate for the container, e.g. 4.

os_type The operating system type required by the container. Possible values are “linux” and “windows”.

gpu_type Optional. Specifies the GPU type to be allocated for the container. Currently usable values are
“K80”, “P100” and “V100”.

gpu_count Optional when GPU type is set. Specifies the number of GPUs to allocate for the container.

2.5. Composing an infrastructure 17

https://management.azure.com

Occopus, Release v1.10

vnet_name Optional in case the network type is “private”. Name of the virtual network to use for the
container. If not specified, the Azure ACI resource plugin will allocate a virtual network.

subnet_name Optional in case the network type is “private”. The name of the subnet to use for the
container. If not specified, the Azure ACI resource plugin will allocate a subnet.

ports The list of ports to be exposed from the container. This is required to have at least one element
defined (e.g. 8080).

CloudBroker

type: cloudbroker Selects the cloudbroker resource handler.

endpoint The endpoint (url) of the cloudbroker REST API interface.

name Optional. A user-defined name for this resource. Used in logging and can be referred to in the
authentication file to distinguish authentication to be applied among resources having the same type.

description Description of the virtual machine to be started by CloudBroker. This is a subsection
containing further keywords. The available keywords in this section is documented in the REST
Web Service API documentation of CloudBroker on page 49. However, the most important ones are
detailed below.

Obligatory keywords to be defined under description are as follows:

deployment_id Id of the deployment registered in CloudBroker. A deployment defines the cloud,
the image, etc. to be instantiated.

instance_type_id Id of an instance type registered in CloudBroker and valid for the selected
deployment. Instance type specifies the capabilities of the virtual machine to be instantiated.

Important/suggested keywords to be defined under description are as follows:

key_pair_id The ID of the (ssh) key pair to be deployed on the virtual machine. Key pairs can be
registered in the CloudBroker platform behind the ‘Users’/’Key Pairs’ menu after login.

opened_port Determines if a port to be opened to the world. This is a list of numbers separated by
comma.

Example for a resource section including the description subsection:

resource:
type: cloudbroker
endpoint: https://cola-prototype.cloudbroker.com/
description:
deployment_id: bcbdca8e-2841-45ae-884e-d3707829f548
instance_type_id: c556cb53-7e79-48fd-ae71-3248133503ba
key_pair_id: d865f75f-d32b-4444-9fbb-3332bcedeb75
opened_port: 22,80

18 Chapter 2. Acknowledgement

https://cola-prototype.cloudbroker.com/documents/CloudBrokerPlatform_RESTAPIUsageManual-2.3.13.0.pdf
https://cola-prototype.cloudbroker.com/documents/CloudBrokerPlatform_RESTAPIUsageManual-2.3.13.0.pdf

Occopus, Release v1.10

Docker

type: docker Selects the docker resource handler.

endpoint The endpoint (url) of the docker/swarm interface.

origin The URL of an image or leave it empty and default will be set to dockerhub.

image The name of the image, e.g ubuntu, debian, mysql ..

tag Docker tag. (default = latest)

name Optional. A user-defined name for this resource. Used in logging and can be referred to in the
authentication file to distinguish authentication to be applied among resources having the same type.

CloudSigma

type: cloudsigma Selects the cloudsigma resource handler.

endpoint The endpoint (URL) of the CloudSigma interface, e.g. https://zrh.cloudsigma.com/api/2.0

libdrive_id The UUID of the library drive image to use. After login to CloudSigma UI at https://
zrh.cloudsigma.com/ui, select the menu Storage/Library, select a library on page at https://zrh.
cloudsigma.com/ui/#/library and use the uuid from the url of the selected item e.g. 40aa6ce2-5198-
4e6b-b569-1e5e9fbaf488 for Ubuntu 15.10 (Wily) found at page https://zrh.cloudsigma.com/ui/
#/library/40aa6ce2-5198-4e6b-b569-1e5e9fbaf488 .

name Optional. A user-defined name for this resource. Used in logging and can be referred to in the
authentication file to distinguish authentication to be applied among resources having the same type.

description Description of the virtual machine to be started in CloudSigma (e.g. CPU, memory, net-
work, public key). This is a section containing further keywords. The available keywords in this
section is defined in the schema definition of CloudSigma VMs under the top-level keyword fields.

Obligatory keywords to be defined under description are as follows:

cpu Server’s CPU Clock speed measured in MHz, e.g.: 2000

mem Server’s Random Access Memory measured in bytes, e.g.: 1073741824 (for 1 GByte)

vnc_password VNC Password to connect to server, e.g. “secret”

Example for a typical description section, using 2GHz CPU, 1GB RAM with public ip address.

description:
cpu: 2000
mem: 1073741824
vnc_password: the_password
name: the_hostname
pubkeys:
-
the_uuid_of_an_uploaded_keypair

nics:
-
firewall_policy: the_uuid_of_a_predefined_firewall_policy
ip_v4_conf:
conf: dhcp
ip: null

(continues on next page)

2.5. Composing an infrastructure 19

https://zrh.cloudsigma.com/api/2.0
https://zrh.cloudsigma.com/ui
https://zrh.cloudsigma.com/ui
https://zrh.cloudsigma.com/ui/#/library
https://zrh.cloudsigma.com/ui/#/library
https://zrh.cloudsigma.com/ui/#/library/40aa6ce2-5198-4e6b-b569-1e5e9fbaf488
https://zrh.cloudsigma.com/ui/#/library/40aa6ce2-5198-4e6b-b569-1e5e9fbaf488
https://cloudsigma-docs.readthedocs.io/en/2.14/servers.html#schema

Occopus, Release v1.10

(continued from previous page)

runtime:
interface_type: public

2.5.3.2 Collecting Resource Attributes

The following subsections detail how the string values (identifiers, settings, etc.) for the different attributes/keywords
under the resource section of the node definition can be collected using the user interface of a particular resource.

Amazon (EC2)

This tutorial helps users how the attributes for the resource section in the node definition can be collected from the web
interface of the Amazon cloud.

First of all, you need of course an Amazon AWS account. Using Amazon AWS is implemented using the EC2 interface,
thus the EC2-Helloworld tutorial is a good starting point.

In case of Amazon EC2, the following information is necessary to start up a node in an Occopus infrastructure:

• security credentials (access key and secret key)

• Amazon region name and its EC2 endpoint

• an image ID (AMI)

• an instance type

• at least one security group ID

• a key pair name

• a subnet identifier.

Security credentials (access key and secret key)

You can get your access key and secret key through the web interface of Amazon AWS:

1. Visit the AWS console.

2. In the top right corner, select “Security credentials” under your profile as shown in the following screenshot:

20 Chapter 2. Acknowledgement

https://console.aws.amazon.com/console/home

Occopus, Release v1.10

3. Expand the Access keys menu, as shown in the following screenshot:

2.5. Composing an infrastructure 21

Occopus, Release v1.10

4. Click on the “Create New Access Key” button to create new credentials if you don’t know the Secret Access Key
of your already existing key(s). A window similar to the following screenshot will appear. Here you can make
your Access Key ID and Secret Access Key appear, but you can also download your credentials for later use.

22 Chapter 2. Acknowledgement

Occopus, Release v1.10

Amazon region name and its EC2 endpoint

Amazon hosts its services in multiple regions. There are two possible ways to get region names and their relevant EC2
endpoints: using the EC2 command line tools or the web interface.

Use the web interface to get region names and EC2 endpoints

The Amazon Documentation Amazon Documentation has a list of available regions and their EC2 endpoints. In order
to get the complete EC2 endpoint URL for Occopus, simply add https:// before the Endpoint specified by the
table shown in the Amazon Documentation’s table. For example, the EC2 endpoint URL of the eu-west-1 region is
https://ec2.eu-west-1.amazonaws.com. Simple as that.

Use the EC2 command line tools to get region names and EC2 endpoints

Follow the EC2 command line tool setup guide to set up and configure EC2 command line tools onto your machine.
Once done, you can use the ec2-describe-regions command to list available regions and EC2 endpoints:

$ ec2-describe-regions -H
REGION Name Endpoint
REGION eu-west-1 ec2.eu-west-1.amazonaws.com
REGION ap-southeast-1 ec2.ap-southeast-1.amazonaws.com
REGION ap-southeast-2 ec2.ap-southeast-2.amazonaws.com
REGION eu-central-1 ec2.eu-central-1.amazonaws.com
REGION ap-northeast-1 ec2.ap-northeast-1.amazonaws.com
REGION us-east-1 ec2.us-east-1.amazonaws.com

(continues on next page)

2.5. Composing an infrastructure 23

http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ec2-cli-get-set-up.html

Occopus, Release v1.10

(continued from previous page)

REGION sa-east-1 ec2.sa-east-1.amazonaws.com
REGION us-west-1 ec2.us-west-1.amazonaws.com
REGION us-west-2 ec2.us-west-2.amazonaws.com

Here, the second column shows the region name, the third column shows the EC2 endpoint for the given region. You
should prefix the endpoint name with https:// for receiving the endpoint URL for Occopus.

Get image ID

Two possible methods are available to get a proper image ID: using the EC2 CLI tools’ ec2-describe-images -a
command and the web interface. The second one is preferred, as one can get a more user-friendly description of the
picked on image.

In the AWS EC2 management console, select AMIs from the IMAGES menu. Search for an AMI, as shown in the
screenshot below:

Here, the value of the AMI ID column contains the image identifier.

Get instance type

The instance type determines the characteristics (CPU, memory) of the VM created. You can get the names and
properties of the instance types supported by Amazon through the Instance types documentation.

Get security group IDs

Security groups define the network traffic allowed for the instances to be started. Thus, you should create security

24 Chapter 2. Acknowledgement

https://aws.amazon.com/ec2/instance-types/

Occopus, Release v1.10

groups in order to enable SSH or HTTP traffic into your VM. The following screenshot shows a number of security
groups already defined. Select those you’d like to attach to the VM started by Occous. The value of the Group ID
column contains the values which are needed by Occopus.

Get keypair name

Key pairs are importd into your running VM so SSH access is possible. You can check the name of available keypairs
in the AWS EC2 management console, under the Key Pairs menu as shown in the following screenshot. The value of
the Key pair name is the one Occopus needs.

2.5. Composing an infrastructure 25

Occopus, Release v1.10

Get Subnet identifier

You can get the list of available subnets through the AWS VPC dashboard, by selecting Subnets from the menu as
shown in the following screenshot. You should use the value of the Subnet ID column for Occopus.

26 Chapter 2. Acknowledgement

Occopus, Release v1.10

Closing

With all the above values, now you can modify the EC2-Helloworld tutorial to run on Amazon.

Cloudbroker

This tutorial helps users how the attribute values under the resource section in node definition for the cloudbroker plugin
can be collected from the web interface of CloudBroker.

A minimal version of the resource section for CloudBroker may look like as follows:

resource:
type: cloudbroker
endpoint: replace_with_endpoint_of_cloudbroker_interface
description:
deployment_id: replace_with_deployment_id
instance_type_id: replace_with_instance_type_id
key_pair_id: replace_with_keypair_id
opened_port: replace_with_list_of_ports_separated_with_comma

contextualisation:
...

You need to collect the following attributes to complete the resource section:

2.5. Composing an infrastructure 27

Occopus, Release v1.10

1. endpoint

2. deployment_id

3. instance_type_id

4. key_pair_id

5. opened_port

endpoint

The value of this attribute is the url of the CloudBroker REST API interface, which is usually the same as the login url.

As a result, in our case the endpoint attribute in the resource section will be https://cola-prototype.
cloudbroker.com.

deployment_id

The value of this attribute is the id of a preregistered deployment in CloudBroker referring to a cloud, image, region,
etc. After login to the CloudBroker Web UI, select Software/Deployments menu.

28 Chapter 2. Acknowledgement

Occopus, Release v1.10

On this page you can see the list of the preregistered deployments. Make sure the image contains a base os (preferably
Ubuntu) installation with cloud-init support! Assuming we need a Linux Ubuntu 14.04 on CloudSigma, click on
the name of the deployment. The id is the UUID of the deployment which can be seen in the address bar of your
browser.

2.5. Composing an infrastructure 29

Occopus, Release v1.10

As a result, the deployment_id attribute in the resource section will be
bcbdca8e-2841-45ae-884e-d3707829f548.

instance_type_id

The value of this attribute is the id of a preregistered instance type in CloudBroker referring to the capacity of the virtual
machine to be deployed. Select Resources/Instance Types menu. On this page you can see the list of available
instance types.

Assuming we need a Micro instance type for CloudSigma, select and click on the instance type. The id is the
UUID of the instance type which can be seen in the address bar of your browser when inspecting the details of the
instance type.

30 Chapter 2. Acknowledgement

Occopus, Release v1.10

As a result, the instance_type_id attribute in the resource section will be
c556cb53-7e79-48fd-ae71-3248133503ba.

key_pair_id:

The value of this attribute is id of a preregistered ssh public key in CloudBroker which will be deployed on the virtual
machine. To register a new ssh public key, upload one on page under the Users/Key Pairs menu.

2.5. Composing an infrastructure 31

Occopus, Release v1.10

On this page you can see the list of registered keys. Assuming we need the key with name “eniko”, click on the name
of the key. The id is the UUID of the key pair which can be seen in the address bar of your browser when inspecting
the details of the key pair.

As a result, the key_pair_id attribute in the resource section will be 3e64ab7e-76b4-4e87-9cc7-e56baf322cac.

opened_port:

The opened_port is one or more ports to be opened to the world. This is a string containing numbers separated by
comma. Assuming we would like to open ports 80 and 443 for our web server, the opened_port attribute in the

32 Chapter 2. Acknowledgement

Occopus, Release v1.10

resource section will be ‘80, 443’.

The finalised resource section with the IDs collected in the example above will look like this:

resource:
type: cloudbroker
endpoint: https://cola-prototype.cloudbroker.com/
description:
deployment_id: bcbdca8e-2841-45ae-884e-d3707829f548
instance_type_id: c556cb53-7e79-48fd-ae71-3248133503ba
key_pair_id: 3e64ab7e-76b4-4e87-9cc7-e56baf322cac
opened_port: ‘80, 443’

contextualisation:
...

CloudSigma

The following tutorial will help users how the attributes for the resource section in the node definition can be collected
from the web interface of the CloudSigma cloud. In the following example we will use the Zurich site of CloudSigma.

A minimal version of the resource section for CloudSigma may look like as follows:

resource:
type: cloudsigma
endpoint: https://zrh.cloudsigma.com/api/2.0
libdrive_id: <uuid_of_selected_drive_from_library>
description:
cpu: 2000
mem: 2147483648
pubkeys:
-
<uuid_of_your_registered_public_key>

nics:
-
firewall_policy: <uuid_of_your_registered_firewall_policy>
ip_v4_conf:
conf: dhcp

contextualisation:
...

The example above assumes the followings:

1. Virtual machine will be started at the Zurich site, see endpoint attribute. To use an alternative location,
select one from the cloudsigma documentation on API endpoints.

2. CPU speed will be 2000Mhz. See cpu attribute.

3. Memory size will be 2GByte. See mem attribute.

4. VM will have a public ip address defined by dhcp. See ip_v4_conf attribute.

You need to collect the following 3 more attributes to complete the section:

1. libdrive_id

2. pubkeys

3. firewall_policy

2.5. Composing an infrastructure 33

https://zrh.cloudsigma.com/ui/
https://cloudsigma-docs.readthedocs.io/en/latest/general.html#api-endpoint

Occopus, Release v1.10

libdrive_id

The value of this attribute is an uuid refering to a particular drive in the storage library on which an operating system is
preinstalled usually. After login to the CloudSigma Web UI, select Storage/Library menu and a full list of available
drives will be listed.

Assuming we need an Ubuntu 14.04 LTS(Trusty), scroll down and search for that drive.

Then click on the item and copy its uuid from the address bar.

34 Chapter 2. Acknowledgement

https://zrh.cloudsigma.com/ui/

Occopus, Release v1.10

As a result, the libdrive_id attribute in the resource section will be 0644fb79-0a4d-4ca3-ad1e-aeca59a5d7ac
referring to the drive containing an Ubuntu 14.04 LTS(Trusty) operating system.

pubkeys

The value of this attribute is the uuid refering to a particular public key registered under your CloudSigma account.
To register a new ssh keypair, generated or upload one at page under the Access & Security/Keys Management
menu. On this page you can see the list of registered keys and their uuid.

2.5. Composing an infrastructure 35

Occopus, Release v1.10

As a result, the pubkeys attribute in the resource section will be d7c0f1ee-40df-4029-8d95-ec35b34dae1e in this
case refering to the selected key. Multiple keys can be specified, if necessary.

firewall_policy

The value of this attribute is the uuid refering to a particular firewall policy registered under your CloudSigma account.
To register a new firewall policy, use the page under the Networking/Policies menu. On this page you can see the
list of registered firewall policies.

Click on the firewall policy to be applied on the VM, the new page will show the uuid of the policy.

36 Chapter 2. Acknowledgement

Occopus, Release v1.10

As a result, the firewall_policy attribute in the resource section will be
fd97e326-83c8-44d8-90f7-0a19110f3c9d in this case refering to the selected policy. In this policy, port
22 is open for ssh. Multiple policies can be specified, if necessary.

The finalised resource section with the uuids collected in the example above will look like this:

resource:
type: cloudsigma
endpoint: https://zrh.cloudsigma.com/api/2.0
libdrive_id: 0644fb79-0a4d-4ca3-ad1e-aeca59a5d7ac
description:
cpu: 2000
mem: 2147483648
pubkeys:
-
d7c0f1ee-40df-4029-8d95-ec35b34dae1e

nics:
-
firewall_policy: fd97e326-83c8-44d8-90f7-0a19110f3c9d
ip_v4_conf:
conf: dhcp

contextualisation:
...

Important: Collect the uuids under your account instead of using the ones in this example!

Important: The resource section must follow YAML syntax! Make sure indentation is proper, avoid using <tab>, use
spaces!

2.5. Composing an infrastructure 37

Occopus, Release v1.10

OpenStack Horizon (Nova)

This tutorial helps users how the attribute values under the resource section in node definition for the nova plugin can
be collected from the Horizon web interface of OpenStack. In this help the hungarian MTA Cloud will be taken as an
example to show the procedure.

A minimal version of the resource section for MTA Cloud may look like as follows:

resource:
type: nova
endpoint: replace_with_endpoint_of_nova_interface_of_your_cloud
project_id: replace_with_projectid_to_use
user_domain_name: Default
image_id: replace_with_id_of_your_image_on_your_target_cloud
network_id: replace_with_id_of_network_on_your_target_cloud
flavor_name: replace_with_id_of_the_flavor_on_your_target_cloud
key_name: replace_with_name_of_keypair_or_remove
security_groups:

-
replace_with_security_group_to_add_or_remove_section

floating_ip: add_yes_if_you_need_floating_ip_or_remove
floating_ip_pool: replace_with_name_of_floating_ip_pool_or_remove

contextualisation:
...

You need to collect the following attributes to complete the resource section:

1. endpoint

2. project_id

3. image_id

4. network_id

5. flavor_name

6. key_name

7. security_groups

endpoint

The endpoint is an url of the nova interface of your OpenStack cloud. After login to the Horizon Web UI, select
Project/Compute/Access & Security/API Access menu. The value of the endpoint is the service endpoint of
the Identity service.

38 Chapter 2. Acknowledgement

https://cloud.mta.hu/

Occopus, Release v1.10

Note: The nova endpoint for MTA Cloud is: https://sztaki.cloud.mta.hu:5000/v3.

project_id

The value of this attribute is an ID referring to a project registered under your account. Select Identity/Projects
menu and a full list of available projects will be listed. Select the proper project and copy its ID found at the Project
ID column.

We have chosen the OCCOPUS project for which the project_id attribute in the resource section will be
a678d20e71cb4b9f812a31e5f3eb63b0.

image_id

The value of this attribute is an ID referring to an image on the cloud to be instantiated to realize a virtual machine.
Select Project/Compute/Images menu and a full list of available images will be listed.

2.5. Composing an infrastructure 39

Occopus, Release v1.10

Assuming we need an Ubuntu 14.04 LTS, click on the name of the image. On the appearing page the ID attribute
contains the value we are looking for.

As a result, the image_id attribute in the resource section will be d4f4e496-031a-4f49-b034-f8dafe28e01c.

network_id

The value of this attribute is an ID refering to the ID of the network to attach to the virtual machine. Select Project/
Network/Networks. On this page you can see the list of available networks of your project.

40 Chapter 2. Acknowledgement

Occopus, Release v1.10

Assuming we need the OCCOPUS_net network, select and click on the network. On the appearing page the ID attribute
contains the value we are looking for.

As a result, the network_id attribute in the resource section will be 3fd4c62d-5fbe-4bd9-9a9f-c161dabeefde.

flavor_name

The value of this attribute is the ID referring to the type of flavor to be instantiated through nova when realizing a
virtual machine. It determines the resources (CPU, memory, storage, networking) of the node. Unfortunately flavor
IDs cannot be listed on the webpage, but they can be seen on an instance’s overview page (Choose the Project/
Compute/Instances menu and select one of your instances).

Note: For MTA Cloud users the following flavor IDs are defined: m1.small („4740c1b8-016d-49d5-a669-
2b673f86317c”), m1.medium („3”), m1.large („4”), m1.xlarge („41316ba3-2d8b-4099-96d5-efa82181bb22”)

key_name

The value of this attribute is a name refering to a particular public key registered under your account. To register a new
ssh keypair, generate or upload one on page under the Project/Compute/Access&Security/Key Pairs menu.

2.5. Composing an infrastructure 41

Occopus, Release v1.10

On this page you can see the list of registered keys and their fingerprint. Copy the name of your key from the Key Pair
Name column.

As a result, the key_name attribute in the resource section will be eniko-test.

security_groups

The value of this attribute is a list of security groups referring to particular firewall policies registered under your
project. To register a new firewall policy, use the page under the Project/Compute/Access & Security menu. On
this page you can see the list of registered firewall policies.

As a result, the security_groups attribute in the resource section will be default and ssh. In ssh policy, port 22 is
open.

The finalised resource section with the IDs collected in the example above will look like this:

resource:
type: nova
endpoint: https://sztaki.cloud.mta.hu:5000/v3
project_id: a678d20e71cb4b9f812a31e5f3eb63b0
user_domain_name: Default
image_id: d4f4e496-031a-4f49-b034-f8dafe28e01c
network_id: 3fd4c62d-5fbe-4bd9-9a9f-c161dabeefde
flavor_name: 3

(continues on next page)

42 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

key_name: eniko-test
security_groups: [default, ssh]
floating_ip: yes
floating_ip_pool: ext-net

contextualisation:
...

Important: Collect the IDs under your account instead of using the ones in this example!

Important: The resource section must follow YAML syntax! Make sure indentation is proper, avoid using <tab>, use
spaces!

2.5.3.3 Contextualisation

In this section, the attributes (keywords) are listed and explained which can be used for the different contextualisation
plugins.

Cloudinit

type: cloudinit Selects the cloudinit contextualisation plugin. Can be used with the following re-
source handlers: ec2, nova, cloudsigma, azure.

context_template This section can contain a cloud init configuration template. It must follow the
syntax of cloud-init. See the Cloud-init website for examples and details. Please note that Amazon
AWS currently limits the length of this data in 16384 bytes.

attributes Optional. Any user-defined attributes. Used for specifying values of attributes in chef
recipes.

Docker

type: docker Selects the docker contextualisation plugin. Can be used with the following resource
handlers: docker, azure_aci.

env Environment variables to be passed to containers.

command Command to be executed inside the container once the container come to life. In case of the
azure_aci resource handler, this is required to be a list.

2.5. Composing an infrastructure 43

https://cloudinit.readthedocs.org/en/latest

Occopus, Release v1.10

2.5.3.4 Contextualisation variables and methods

Contextualization plugins

In Occopus, each node can have contextualization which is processed at the startup phase during building the node.
Occopus has a pluggable contextualization module, currently there are plugins called “cloudinit” and “docker”. The
docker contextualization plugin can be used with docker containers to specify command, environment variables, etc.
The cloudinit contextualization plugin can be used to specify user data passed to the cloud-init tool on the launched
virtual machine. The required keywords for activating the cloudinit contextualization plugin is described in the manual.

Cloud-init plugin

The contextualization script for the cloudinit plugin can be dynamically updated with information Occopus has on
the infrastructure and on its living nodes. The script may contain references to constants or even to methods which
represent placeholders for dynamically resolvable strings. The script containing these placeholders are considered as
template. Occopus performs the resolution of the template just before starting the virtual machine and passes it as user
data to the Cloud API.

Jinja2 templating

For handling the contextualization script as template, Occopus uses Jinja2. Jinja2 is a designer-friendly full featured
template engine. For detailed information on Jinja2, visit the website at Jinja Desinger Documentation. Since the
content of the contextualization can be considered as a Jinja2 template, Jinja syntax can be used. The details of the
syntax can be found on the Jinja webpage, however we provide a short summary for the simplest cases.

General rules

A template contains variables and/or expressions, which get replaced with values when a template is rendered. For
variables and/or expressions a pair of double brackets (e.g. “{{foo}}”) can be used, while statements are marked with
bracket-percentage pair (e.g. “{% for item in seq %}”).

How/where to define own variables

Variables can be defined in Occopus in the infrastructure description in the node description or at global level. Variables
can be defined to be valid only for a given node (see “foo” variable in the code below) or can be defined to be valid in
the entire infrastructure (see “bar” variable in the code below).

myinfra.yaml:

nodes:
-

name: mynode
...
variables:

foo: local
variables:

bar: global

44 Chapter 2. Acknowledgement

http://jinja.pocoo.org/docs/latest/templates

Occopus, Release v1.10

How/where to refer to own variables

In the text/yaml file containing the contextualisation/ user data, one may refer to predefined variables in the following
way:

mycloudinit_context_file:

write_files:
- content: "foo: {{variables.foo}}\nbar: {{variables.bar}}\n"
path: /tmp/myvars.txt:

As a result the cloud-init will create the following content:

/tmp/myvars.txt:

foo: local
bar: global

Enable/disable jinja syntax

If you do not want Jinja to process a part of your text, put your text between the following two jinja commands. As a
result Jinja will ignore to translate the text within this section.

{% raw %}
...
{% endraw %}

System level constants and methods

Constants:

infra_name string containing the name of the infrastructure (as defined in infra description)

infra_id string containing the identifier of the infrastructure (generated by Occopus or user defined)

name string containing the name of the node (as defined in infra description)

node_id string containing the identifier of the node instance (uuid generated by Occopus)

Methods:

getip

• Usage: getip(<name of node defined in infra description>)

• Output: string containing an ip address of the (first) instance of the given node

• Example: getip(„master”), getip(variables.masterhostname)

getprivip

• Usage: getprivip(<name of node defined in infra description>)

• Output: string containing a private ip address of the (first) instance of the given node

• Example: getprivip(„master”), getprivip(variables.masterhostname)

getipall

• Usage: getipall(<name of node defined in infra description>)

2.5. Composing an infrastructure 45

Occopus, Release v1.10

• Output: string list containing ip addresses of the instances of the given node

• Example: getipall(„master”), getipall(variables.masterhostname)

cut

• Usage: cut(<string to be sliced>,<startindex>,<endindex>)

• Output: substring of the given string between the indexes

• Example: cut(infra_id,0,7)

cmd

• Usage: cmd(‘command with options’)

• Output: string returned by the command

• Example: cmd(‘curl -X GET http://localhost/message.txt’), cmd(‘cat /etc/hosts’)

2.5.3.5 Config management

In this section, the attributes (keywords) are listed and explained which can be used for the different config manager
plugins.

Chef

type: chef Selects chef as config manager.

endpoint The endpoint (url) of the chef server containing the recipes.

run_list The list of recipes to be executed by chef on the node after startup.

Puppet-solo

type: puppet_solo Selects puppet (server-free version) as config manager.

manifests The location (url) of the puppet manifest files to be deployed.

modules The list module names to be of deployed by puppet.

attributes List of attribute-value pairs defining the values of the attributes.

2.5.3.6 Health-check

In this section, the attributes (keywords) are listed and explained which can be used for to specify the way of health
monitoring of the node.

46 Chapter 2. Acknowledgement

http://localhost/message.txt

Occopus, Release v1.10

Ping

ping: True

Optional. Health check includes ping test against the node if turned on. Default is on.

Ports

ports:
- 22
- 1234

Optional. Health check includes testing against open ports if list of ports are specified. Default is none.

Urls

urls:
- http://{{ip}}:5000/myserviceOne
- http://{{ip}}:6000/myserviceTwo

Optional. Health check includes testing against web services if urls are specified. Default is none. The
{{ip}} in the url means the ip address of the node being specified.

MysqlDBs

mysqldbs:
- { name: 'mydbname1', user: 'mydbuser1', pass: 'mydbpass1' }
- { name: 'mydbname2', user: 'mydbuser2', pass: 'mydbpass2' }

Optional. Health check includes testing available and accessible mysql database connection if name, user,
pass triples are specified. Default is none. If specified mysql database connecticity check is performed
with the given parameters.

Timeout

timeout: 600

Optional. Specifies a period in seconds after which continuous failure results in the node considered as
failed. The current protocol in Occopus is to restart failed nodes. Default is 600.

2.5. Composing an infrastructure 47

Occopus, Release v1.10

2.5.3.7 Multiple node implementations

When creating node definitions, you can create multiple implementations for the same node. These implementations
can differ in any parameter listed in the sections before, including but not limited to: resource backend, image id,
instance type, contextualization, configuration management, health-check services used, etc. To create multiple imple-
mentations, just list them using hyphens. Make sure to watch for the indentation of the blocks.

The following example shows a node definition with multiple different implementations.

'node_def:example_node':
-

resource:
name: my_opennebula_ec2
type: ec2
endpoint: my_opennebula_endpoint
...

...
config_management:

type: chef
...

-
resource:

name: my_aws_ec2
type: ec2
endpoint: my_aws_endpoint
...

...
-

resource:
name: my_nova
type: nova
endpoint: my_nova_endpoint
...

...
config_management:

type: puppet_solo
...

...

If there are multiple implementations for a node definition, you can filter them in the Node description, in the Infras-
tructure description file. Occopus will automatically select an available implementation to launch from those fulfilling
the filtering parameters.

48 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.5.3.8 Examples

Examples can be found in the tutorial section of the User Guide.

2.6 Usage

2.6.1 Command line tools

Occopus can be used via CLI commands to build, maintain, scale and destroy infrastructures. The commands and their
usages are described below.

2.6.1.1 occopus-build

This command deploys an infrastructure based on an infrastructure description.

On error during creating the infrastructure it rolls back everything to the initial state. The user can also stop the process
manually by executing a SIGINT (Ctrl + C). Allocation of resources will be rolled back in this case as well.

Once the infrastructure is successfully built, Occopus exits. This command provides no lifecycle-management.

Usage:

occopus-build [-h]
[--cfg CFG_PATH]
[--auth_data_path AUTH_DATA_PASS]
[--parallelize]
[-i INFRA_ID]
infra_def

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --auth_data_path AUTH_DATA_PATH: (optional) path to Occopus authentication file (default: None) if
undefined, file named auth_data.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --parallelize: (optional) parallelize processing instructions e.g. independent nodes are created parallel
(default: sequential)

• -i INFRA_ID: (optional) identifier of a previously built, existing infrastructure - if provided, occopus will
reconfigure the existing infrastructure instead of building a new one. Use with caution! Occopus may
build/destroy nodes based on the difference between the existing and the new infrastructure defined by
infra_def!

• infra_def: file containing an infrastructure definition to be built

Return type: On successful finish it returns the identifier of the infrastructure. The identifier can be stored or listed
by the occopus-maintain command.

2.6. Usage 49

Occopus, Release v1.10

2.6.1.2 occopus-destroy

This command destroys an infrastructure including all of its nodes built previously by Occopus. No recover is possible.

Usage:

occopus-destroy [-h]
[--cfg CFG_PATH]
[--auth_data_path AUTH_DATA_PATH]
-i INFRA_ID

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --auth_data_path AUTH_DATA_PATH: (optional) path to Occopus authentication file (default: None) if
undefined, file named auth_data.yaml is searched at predefined locations, e.g. $HOME/.occopus

• -i INFRA_ID: identifier of the infrastructure to destroy

2.6.1.3 occopus-maintain

This command is capable of maintaining an infrastructure built by Occopus. Maintenance includes health checking,
recovery and scaling. It can also list available infrastructure or can provide details on an infrastructure.

Usage:

occopus-maintain [-h]
[--cfg CFG_PATH]
[--auth_data_path AUTH_DATA_PATH]
[--parallelize]
[-l|--list]
[-r|--report]
[-i INFRA_ID]
[-c|--cyclic]
[-t INTERVAL]
[-o|--output OUTPUT]
[-f|--filter FILTER]

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --auth_data_path AUTH_DATA_PATH: (optional) path to Occopus authentication file (default: None) if
undefined, file named auth_data.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --parallelize: (optional) parallelize processing instructions e.g. independent nodes are created parallel
(default: sequential)

• -l, --list: (optional) list the built pieces of infrastructure

• -r, --report: (optional) reports about an infrastructure

• -i INFRA_ID: (optional) identifier of the infrastructure to maintain

50 Chapter 2. Acknowledgement

Occopus, Release v1.10

• -c, --cyclic: (optional) performs continuous maintenance

• -t INTERVAL: (optional) specifies the time in seconds between maintenance sessions (default: 10)

• -o OUTPUT: (optional) defines output file name for reporting on an infra (default: None)

• -f FILTER: (optional) defines the nodename to be included in reporting (default: None)

2.6.1.4 occopus-scale

This command registers scaling requests for a given node in an infrastructure. With scaling the instance count of a node
can be increased or decreased by a given number. Scaling requests are handled and realized by the occopus-maintain
command.

Usage:

occopus-scale [-h]
[--cfg CFG_PATH]
[--auth_data_path AUTH_DATA_PATH]
-i INFRA_ID
-n|--node NODE
[-c|--changescale CHANGESCALE]
[-s|--setscale SETSCALE]
[-f|--filter FILTER]

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --auth_data_path AUTH_DATA_PATH: (optional) path to Occopus authentication file (default: None) if
undefined, file named auth_data.yaml is searched at predefined locations, e.g. $HOME/.occopus

• -i INFRA_ID: identifier of the infrastructure which contains the node to scale

• -n NODE, --node NODE: name of the node to scale

• -c CHANGESCALE, --changescale CHANGESCALE: positive/negative number expressing the direction
and magnitude of scaling (positive: scale up; negative: scale down)

• -s SETSCALE, --setscale SETSCALE: positive number expressing the number of nodes to scale to

• -f FILTER, --filter FILTER: filter for selecting nodes for downscaling; filter can be nodeid or ip
address (default: None)

2.6.1.5 occopus-import

This command imports i.e. loads the node definitions from file to the database of Occopus.

Important: Each time a node definition file changes, this command must be executed since Occopus takes node
definitions from its database!

Usage:

2.6. Usage 51

Occopus, Release v1.10

occopus-import [-h]
[--cfg CFG_PATH]
datafile

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• datafile: file containing node definition(s)

2.6.1.6 occopus-rest-service

This command launches occopus as a web service. The occopus rest service can create, maintain, scale and destroy
any infrastructure built by the service. This service provides a restful interface described by REST API .

Usage:

occopus-rest-service [-h]
[--cfg CFG_PATH]
[--auth_data_path AUTH_DATA_PATH]
[--host HOST]
[--port PORT]
[--parallelize]

Parameters:

• -h, --help: (optional) shows help message

• --cfg CFG_PATH: (optional) path to Occopus config file (default: None) if undefined, file named occo-
pus_config.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --auth_data_path AUTH_DATA_PATH: (optional) path to Occopus authentication file (default: None) if
undefined, file named auth_data.yaml is searched at predefined locations, e.g. $HOME/.occopus

• --host HOST: (optional) sets the host for the service to be assigned to (default: 127.0.0.1)

• --port PORT: (optional) sets the port for the service to be assigned to (default: 5000)

• --parallelize: (optional) parallelize processing instructions (default: sequential)

2.6.2 REST API

2.6.2.1 POST /infrastructures/

Create a new infrastructure and returns the identifier of the infrastructure. The returned identifier can be used as
infraid parameter in the infrastructure-related commands.

Requires an infrastructure description as POST data.

Return type:

{
"infraid": "<infraid_in_uuid_format>"

}

52 Chapter 2. Acknowledgement

Occopus, Release v1.10

Example:

curl -X POST http://127.0.0.1:5000/infrastructures/ --data-binary @my_infrastructure_
→˓description.yaml

2.6.2.2 GET /infrastructures/

List the identifier of infrastructures currently maintained by the service.

Return type:

{
"infrastructures": [

"<infraid_in_uuid_format_for_an_infrastructure>",
"<infraid_in_uuid_format_for_another_infrastructure>"
]

}

2.6.2.3 POST /infrastructures/(infraid)/scaledown/(nodename)/(nodeid)

Scales down a node in an infrastructure by destroying one of its instances specified.

Parameters:

• infraid The identifier of the infrastructure.

• nodename: The name of the node which is to be scaled down.

• nodeid: The identifier of the selected instance.

Return type:

{
"infraid": "<infraid>",
"method": "scaledown",
"nodeid": "<nodeid>",
"nodename": "<nodename>"

}

2.6.2.4 POST /infrastructures/(infraid)/scaleup/(nodename)/(int: count)

Scales up a node in an infrastructure by creating the specified number of instances of the node.

Parameters:

• infraid: The identifier of the infrastructure.

• nodename: The name of the node to be scaled up.

• count: The number of instances to be created.

Return type:

2.6. Usage 53

Occopus, Release v1.10

{
"count": "<count>",
"infraid": "<infraid>",
"method": "scaleup",
"nodename": "<nodename>"

}

2.6.2.5 POST /infrastructures/(infraid)/scaleto/(nodename)/(int: count)

Scales a node in an infrastructure to a given count by creating or destroying instances of the node depending on the
actual number of instances and the required number.

Parameters:

• infraid: The identifier of the infrastructure.

• nodename: The name of the node to be scaled up.

• count: The number of instances to scale the node to.

Return type:

{
"count": "<count>",
"infraid": "<infraid>",
"method": "scaleto",
"nodename": "<nodename>"

}

2.6.2.6 POST /infrastructures/(infraid)/scaledown/(nodename)

Scales up a node in an infrastructure by creating a new instance of the node.

Parameters:

• infraid: The identifier of the infrastructure.

• nodename: The name of the node to be scaled up.

Return type:

{
"count": 1,
"infraid": "<infraid>",
"method": "scaleup",
"nodename": "<nodename>"

}

54 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.6.2.7 POST /infrastructures/(infraid)/scaleup/(nodename)

Scales up a node in an infrastructure by creating a new instance of the node.

Parameters:

• infraid: The identifier of the infrastructure.

• nodename: The name of the node to be scaled up.

Return type:

{
"count": 1,
"infraid": "<infraid>",
"method": "scaleup",
"nodename": "<nodename>"

}

2.6.2.8 POST /infrastructures/(infraid)/attach

Starts maintaining an existing infrastructure.

Parameters:

• infraid: The identifier of the infrastructure.

Return type:

{
"infraid": "<infraid>"

}

2.6.2.9 POST /infrastructures/(infraid)/detach

Stops maintaining an infrastructure.

Parameters:

• infraid: The identifier of the infrastructure.

Return type:

{
"infraid": "<infraid>"

}

2.6. Usage 55

Occopus, Release v1.10

2.6.2.10 POST /infrastructures/(infraid)/notify

Sets notification properties for an infrastructure.

Parameters:

• infraid: The identifier of the infrastructure. Requires a notification description in JSON format as the
POST data.

Return type:

{
"infraid": "<infraid>",

}

2.6.2.11 GET /infrastructures/(infraid)

Report the details of an infrastructure.

Parameters:

• infraid: The identifier of the infrastructure.

Return type:

{
"<nodename>": {

"instances": {
"<nodeid>": {

"resource_address": "<ipaddress>",
"state": "<state>"

}
},
"scaling": {

"actual": "<current_number_of_instances>",
"max": "<maximum_number_of_instances>",
"min": "<minimum_number_of_instances>",
"target": "<target_number_of_instances>"

}
},

}

2.6.2.12 DELETE /infrastructures/(infraid)

Shuts down an infrastructure.

Parameters:

• infraid: The identifier of the infrastructure.

Return type:

{
"infraid": "<infraid>"

}

56 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.6.3 Python API

Occopus provides a Python API which can be used to implement Occopus-based applications in a unified way. The
API gives the possibility to utilise Occopus functionalities inside an application. To read about this possibility, please
go to the API section of the Developer guide.

2.7 Release Notes

2.7.1 v1.10 (30 Nov 2021)

• Deprecate novaclient, relying on openstacksdk only in nova plugin

• Drop voms support, boot volume support in nova plugin

• Remove voms auth type checking for nova plugin

• Add support for booting from volumes in case of diskless flavors

• Add support for endpoints with/wo version number in nova plugin

• Add support to pass FQDN as environment variable in azure container plugin

• Add support for server naming and ssh key in azure vm plugin

• Add cost query to cloudbroker plugin and to API endpoint

2.7.2 v1.9 (25 May 2021)

• Fixing protocol id in azure vm plugin

• Fixing authentication check in the azure container and vm plugins

• Refactor floating ip handling in nova plugin

• Update nova client library to latest version in nova plugin

2.7.3 v1.8 (17 Aug 2020)

• Add Azure ACI (container) plugin

• Remove OCCI plugin

2.7.4 v1.7 (30 Apr 2020)

• Add Azure plugin

• Upgrade to Python 3

• Add reporting multiple node addresses

• Add -f parameter for downscale to select node

• Add ApplicationCredential auth type handling to nova

• Add region selection to nova

• Add downscale by any ip of the node

2.7. Release Notes 57

Occopus, Release v1.10

2.7.5 v1.6 (05 Apr 2019)

• New REST methods: notify, scaleto

• Export ip addresses by occopus-maintain

• Select youngest instance at downscaling when unspecified

• Added FCM event logging and notification

• Add cmd() and getprivip() methods in cloud-init resolution

• Add tagging for ec2 clouds

• Fixes in cloudsigma plugin (start server timeout, error code, ip retrieval)

• Fixes in docker plugin (version, dependencies, local image source support)

• Fixes in ec2 plugin (boto v2.48.0. with dependencies)

2.7.6 v1.5 (23 May 2017)

• Reimplemented cloudbroker plugin: handle instances, not jobs

• Remove cloud-broker node resolver (replaced by cloud-init)

• Add multiuser support in handling redis server

• Improve error handling and logging in cloudsigma, ec2 and occi plugins

• Improve nova plugin to handle interruption

• Add infra and node name syntax checking

• Add new Occopus installer script

• Improve parallel node creation

2.7.7 v1.4 (27 March 2017)

• Improve node handling in cloudsigma plugin

• Improve floating ip handling in nova plugin

• Precise syntax error reporting for descriptors

• Unique VM name for nodes as default

• Introduce user defined VM name templates

• Improve error/exception handling and reporting

• Fix logging and evaluation in schema checker

• Fix calculating default scaling min,max

• Restructure health-check reporting

• Deprecate ‘network_mode’ attribute in docker plugin

• Introduce attach and detach functions in rest

• Compatible REST and cmd-line functions

58 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.7.8 v1.3 (09 January 2017)

• New Puppet config-manager plugin: server-free, called “puppet_solo”

• Remove external redis config for occopus-import command

• Remove attribute dependency from plugins

• Reimplement floating_ip handling in nova plugin

• Fix bug in filtering

• New tutorial for puppet_solo plugin

• New tutorial to introduce autoscaling with prometheus

2.7.9 v1.2 (11 August 2016)

• Support for keystone v3 password-based authentication in Nova plugin

• Infrastructure dynamic reconfiguration

• More logs in occi plugin

• Small fixes

2.7.10 v1.1 (5 June 2016)

• New CloudSigma resource-handler plugin

• New tutorials for CloudSigma

• New getipall() method for cloud-init

• Fix yaml_import in node definition

• Bugfixes in plugins: occi, docker, nova

2.7.11 v1.0 (6 April 2016)

• Restructure node definition format

• Introduce schema checking

• Mixed config-manager support

• Refactor plugin names

• Reorganise config and authentication

• New authenticator selection mechanism

• New filtering mechanism in node description

• Simplification of health_check

• Introduce getip() in context templates

• Update occopus commands

• Introduce occopus-maintain command for maintenance

• Introduce occopus-scale command for scaling

2.7. Release Notes 59

Occopus, Release v1.10

• Support for multi infrastructure handling

• Refactor occopus-import command parameters

2.7.12 v0.3.0 (15 Jan 2016)

• introduce periodical service health checking

• new service health check mechanism: database check

• new service health check mechanism: port check

• add timeout for service unavailability

• improved nova plugin: voms based authorization

• new plugin: handling docker cluster

• new plugin: occi cloud interface for EGI FedClouds

• tutorials to demonstrate chef, docker and occi plugins

• node definition ‘synch_strategy’ keyword renamed to ‘service_health_check’

2.7.13 v0.2.1 (10 Nov 2015)

Improved EC2 handling:

• support for security group, subnet and keypairs in EC2 plugin

• two ec2 tutorials updated

2.7.14 v0.2.0 (4 Nov 2015)

• multi-cloud support

• basic command line utils and REST interface

• support for cloud interfaces: EC2, NOVA, CloudBroker

• support for configuration manager: Chef

• initial version of error detection and recovery

• manual scaling through REST API

• tutorials for EC2, NOVA and CloudBroker

2.8 Contact Us

Have any Occopus questions?

Feel free to contact us occopus at lists.lpds.sztaki dot
hu or use our GitHub issues like a communication chan-
nel.

60 Chapter 2. Acknowledgement

https://github.com/occopus/master

Occopus, Release v1.10

2.9 Resource plugins

In this section, simple examples will be shown. The ex-
amples will focus on introducing the different resource
types and will have two categories:

• The helloworld examples will only show how a
single node can be created and how very sim-
ple contextualisation information (e.g. message
string) can be passed to a virtual machine (VM)

• The ping examples will focus on to introduce how
dependency can be created and how can connec-
tion between two nodes can be built up by passing
the ip of a node to another.

Please, note that the following examples require a prop-
erly configured Occopus, therefore we suggest to con-
tinue this section if you already followed the instruc-
tions written in the Installation section.

2.9.1 EC2-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

In this example, the following feature(s) will be demon-
strated:

• creating a node with basic contextualisation

• using the ec2 resource handler

Prerequisites

• accessing a cloud through EC2 interface (access key, secret
key, endpoint, regionname)

• target cloud contains a base OS image with cloud-init support
(image id, instance type)

Download

You can download the example as tutorial.examples.ec2-
helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
ec2_helloworld_node set the followings in its resource
section:

2.9. Resource plugins 61

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/ec2-helloworld.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/ec2-helloworld.tar.gz

Occopus, Release v1.10

• endpoint is an url of an EC2 interface of a cloud (e.g.
https://ec2.eu-west-1.amazonaws.com).

• regionname is the region name within an EC2 cloud (e.g.
eu-west-1).

• image_id is the image id (e.g. ami-12345678) on your EC2
cloud. Select an image containing a base os installation with
cloud-init support!

• instance_type is the instance type (e.g. m1.small) of your
VM to be instantiated.

• key_name optionally specifies the keypair (e.g.
my_ssh_keypair) to be deployed on your VM.

• security_group optionally specifies security settings (you
can define multiple security groups in the form of a list, e.g.
sg-93d46bf7) of your VM.

• subnet_id optionally specifies subnet identifier (e.g.
subnet-644e1e13) to be attached to the VM.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:ec2_helloworld_node':
-

resource:
type: ec2
endpoint: replace_with_

→˓endpoint_of_ec2_interface_of_your_cloud
regionname: replace_

→˓with_regionname_of_your_ec2_interface
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud
␣

→˓ instance_type: replace_with_instance_
→˓type_of_your_image_on_your_target_cloud

key_name:␣
→˓replace_with_key_name_on_your_target_cloud

security_group_ids:
- replace_with_

→˓security_group_id1_on_your_target_cloud
- replace_with_

→˓security_group_id2_on_your_target_cloud
subnet_id:␣

→˓replace_with_subnet_id_on_your_target_cloud

2. Make sure your authentication information is set correctly in
your authentication file. You must set your access key and
secret key in the authentication file. Setting authentication
information is described here.

62 Chapter 2. Acknowledgement

Occopus, Release v1.10

3. Load the node definition for ec2_helloworld_node node
into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-ec2-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.2 EC2-Ping

This tutorial builds an infrastructure containing two nodes.
The ping-sender node will ping the ping-receiver node. The
sender node will store the outcome of ping in /tmp directory.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

• querying a node’s ip address and passing the address to an-
other

2.9. Resource plugins 63

Occopus, Release v1.10

• using the ec2 resource handler

Prerequisites

• accessing a cloud through EC2 interface (access key, secret
key, endpoint, regionname)

• target cloud contains a base OS image with cloud-init support
(image id, instance type)

Download

You can download the example as tutorial.examples.ec2-ping
.

Steps

1. Edit nodes/node_definitions.yaml. Both,
for ec2_ping_receiver_node and for
ec2_ping_sender_node set the followings in their
resource section:

• endpoint is an url of an EC2 interface of a cloud (e.g.
https://ec2.eu-west-1.amazonaws.com).

• regionname is the region name within an EC2 cloud (e.g.
eu-west-1).

• image_id is the image id (e.g. ami-12345678) on your EC2
cloud. Select an image containing a base os installation with
cloud-init support!

• instance_type is the instance type (e.g. m1.small) of your
VM to be instantiated.

• key_name optionally specifies the keypair (e.g.
my_ssh_keypair) to be deployed on your VM.

• security_group optionally specifies security settings (you
can define multiple security groups in the form of a list, e.g.
sg-93d46bf7) of your VM.

• subnet_id optionally specifies subnet identifier (e.g.
subnet-644e1e13) to be attached to the VM.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:ec2_ping_receiver_node':
-

resource:
type: ec2
endpoint: replace_with_

→˓endpoint_of_ec2_interface_of_your_cloud
regionname: replace_

→˓with_regionname_of_your_ec2_interface
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud (continues on next page)

64 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/ec2-ping.tar.gz

Occopus, Release v1.10

(continued from previous page)

␣
→˓ instance_type: replace_with_instance_
→˓type_of_your_image_on_your_target_cloud

key_name:␣
→˓replace_with_key_name_on_your_target_cloud

security_group_ids:
-

replace_with_
→˓security_group_id1_on_your_target_cloud

-
replace_with_

→˓security_group_id2_on_your_target_cloud
subnet_id:␣

→˓replace_with_subnet_id_on_your_target_cloud
...

'node_def:ec2_ping_sender_node':
-

resource:
type: ec2
endpoint: replace_with_

→˓endpoint_of_ec2_interface_of_your_cloud
regionname: replace_

→˓with_regionname_of_your_ec2_interface
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud
␣

→˓ instance_type: replace_with_instance_
→˓type_of_your_image_on_your_target_cloud

key_name:␣
→˓replace_with_key_name_on_your_target_cloud

security_group_ids:
-

replace_with_
→˓security_group_id1_on_your_target_cloud

-
replace_with_

→˓security_group_id2_on_your_target_cloud
subnet_id:␣

→˓replace_with_subnet_id_on_your_target_cloud
...

2. Make sure your authentication information is set correctly in
your authentication file. You must set your access key and
secret key in the authentication file. Setting authentication
information is described here.

3. Load the node definition for ec2_ping_receiver_node
and ec2_ping_sender_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.

2.9. Resource plugins 65

Occopus, Release v1.10

contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-ec2-ping.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of ip addresses:
ping-receiver:

192.168.xxx.
→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4)
ping-sender:

192.168.yyy.
→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)

30f566d1-9945-42be-b603-795d604b362f

6. Check the result on your virtual machine.

ssh ...
cat /tmp/message.txt
Hello World!
→˓ I am the sender node created by Occopus.
cat /tmp/ping-result.txt
PING 192.168.xxx.
→˓xxx (192.168.xxx.xxx) 56(84) bytes of data.
64 bytes from 192.
→˓168.xxx.xxx: icmp_seq=1 ttl=64 time=2.74 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=2 ttl=64 time=0.793 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=4 ttl=64 time=0.882 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=5 ttl=64 time=0.786 ms

--- 192.168.xxx.xxx ping statistics ---
5 packets transmitted,
→˓ 5 received, 0% packet loss, time 4003ms
rtt min/
→˓avg/max/mdev = 0.786/1.215/2.749/0.767 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

66 Chapter 2. Acknowledgement

Occopus, Release v1.10

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

2.9.3 Nova-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

• creating a node with basic contextualisation

• using the nova resource handler

Prerequisites

• accessing an OpenStack cloud through its Nova interface
(username/pasword or X.509 VOMS proxy, endpoint, ten-
ant_name or project_id and user_domain_name)

• id of network to be associated to the virtual machine (net-
work_id)

• security groups to be associated to the virtual machine (secu-
rity_groups)

• name of keypair on the target cloud to be associated with the
vm (key_name)

• target cloud contains a base OS image with cloud-init support
(image_id, flavor_name)

• optionally, name of floating ip pool from which ip should be
taken for the vm (floating_ip_pool)

Download

You can download the example as tutorial.examples.nova-
helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
nova_helloworld_node set the followings in its resource
section:

• endpointmust point to the endpoint (url) of your target Nova
cloud.

• project_id is the id of project you would like to use on your
target Nova cloud.

• user_domain_name is the user domain name you would like
to use on your target Nova cloud.

• image_id is the image id on your Nova cloud. Select an im-
age containing a base os installation with cloud-init support!

2.9. Resource plugins 67

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/nova-helloworld.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/nova-helloworld.tar.gz

Occopus, Release v1.10

• flavor_name is the name of flavor to be instantiated on your
Nova cloud.

• server_name optionally defines the hostname of VM
(e.g.:”helloworld”).

• key_name optionally sets the name of the keypair to be asso-
ciated to the instance. Keypair name must be defined on the
target nova cloud before launching the VM.

• security_groups optionally specifies security settings
(you can define multiple security groups in the form of a list)
for your VM.

• floating_ip optionally allocates new floating IP address to
the VM if set to any value.

• floating_ip_pool optionally specifies the name of pool
from which the floating ip must be selected.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:nova_helloworld_node':
-

resource:
type: nova
endpoint: replace_with_

→˓endpoint_of_nova_interface_of_your_cloud
␣

→˓ project_id: replace_with_projectid_to_use
user_domain_name: Default
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud
network_id: replace_

→˓with_id_of_network_on_your_target_cloud
flavor_name: replace_

→˓with_id_of_the_flavor_on_your_target_cloud
server_name: myhelloworld
key_name:␣

→˓replace_with_name_of_keypair_or_remove
security_groups:

-
replace_with_

→˓security_group_to_add_or_remove_section
floating_ip:␣

→˓add_yes_if_you_need_floating_ip_or_remove
floating_ip_pool: replace_

→˓with_name_of_floating_ip_pool_or_remove

2. Make sure your authentication information is set correctly
in your authentication file. You must set your user-
name/password or in case of x509 voms authentication the

68 Chapter 2. Acknowledgement

Occopus, Release v1.10

path of your VOMS proxy in the authentication file. Setting
authentication information is described here.

3. Load the node definition for nova_helloworld_node node
into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-nova-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

aaa.bbb.ccc.
→˓ddd (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.4 Nova-Ping

This tutorial builds an infrastructure containing two nodes.
The ping-sender node will ping the ping-receiver node. The
sender node will store the outcome of ping in /tmp directory.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

2.9. Resource plugins 69

Occopus, Release v1.10

• querying a node’s ip address and passing the address to an-
other

• using the nova resource handler

Prerequisites

• accessing an OpenStack cloud through its Nova interface
(username/pasword or X.509 VOMS proxy, endpoint, ten-
ant_name or project_id and user_domain_name)

• id of network to be associated to the virtual machine (net-
work_id)

• security groups to be associated to the virtual machine (secu-
rity_groups)

• name of keypair on the target cloud to be associated with the
vm (key_name)

• target cloud contains a base OS image with cloud-init support
(image_id, flavor_name)

• optionally, name of floating ip pool from which ip should be
taken for the vm (floating_ip_pool)

Download

You can download the example as tutorial.examples.nova-
ping .

Steps

1. Edit nodes/node_definitions.yaml. Both,
for nova_ping_receiver_node and for
nova_ping_sender_node set the followings in their
resource section:

• endpointmust point to the endpoint (url) of your target Nova
cloud.

• project_id is the id of project you would like to use on your
target Nova cloud.

• user_domain_name is the user domain name you would like
to use on your target Nova cloud.

• image_id is the image id on your Nova cloud. Select an im-
age containing a base os installation with cloud-init support!

• flavor_name is the name of flavor to be instantiated on your
Nova cloud.

• server_name optionally defines the hostname of VM
(e.g.:”helloworld”).

• key_name optionally sets the name of the keypair to be asso-
ciated to the instance. Keypair name must be defined on the
target nova cloud before launching the VM.

• security_groups optionally specifies security settings
(you can define multiple security groups in the form of a list)
for your VM.

70 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/nova-ping.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/nova-ping.tar.gz

Occopus, Release v1.10

• floating_ip optionally allocates new floating IP address to
the VM if set to any value.

• floating_ip_pool optionally specifies the name of pool
from which the floating ip must be selected.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:nova_ping_receiver_node':
-

resource:
type: nova
endpoint: replace_with_

→˓endpoint_of_nova_interface_of_your_cloud
␣

→˓ project_id: replace_with_projectid_to_use
user_domain_name: Default
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud
network_id: replace_

→˓with_id_of_network_on_your_target_cloud
flavor_name: replace_

→˓with_id_of_the_flavor_on_your_target_cloud
server_name: mypingreceiver
key_name:␣

→˓replace_with_name_of_keypair_or_remove
security_groups:

-
replace_with_

→˓security_group_to_add_or_remove_section
floating_ip:␣

→˓add_yes_if_you_need_floating_ip_or_remove
floating_ip_pool: replace_

→˓with_name_of_floating_ip_pool_or_remove
...

'node_def:nova_ping_sender_node':
-

resource:
type: nova
endpoint: replace_with_

→˓endpoint_of_nova_interface_of_your_cloud
␣

→˓ project_id: replace_with_projectid_to_use
user_domain_name: Default
image_id: replace_

→˓with_id_of_your_image_on_your_target_cloud
network_id: replace_

→˓with_id_of_network_on_your_target_cloud
flavor_name: replace_

→˓with_id_of_the_flavor_on_your_target_cloud
(continues on next page)

2.9. Resource plugins 71

Occopus, Release v1.10

(continued from previous page)

server_name: mypingsender
key_name:␣

→˓replace_with_name_of_keypair_or_remove
security_groups:

-
replace_with_

→˓security_group_to_add_or_remove_section
floating_ip:␣

→˓add_yes_if_you_need_floating_ip_or_remove
floating_ip_pool: replace_

→˓with_name_of_floating_ip_pool_or_remove

2. Make sure your authentication information is set correctly
in your authentication file. You must set your user-
name/password or in case of x509 voms authentication the
path of your VOMS proxy in the authentication file. Setting
authentication information is described here.

3. Load the node definition for nova_ping_receiver_node
and nova_ping_sender_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-nova-ping.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of ip addresses:
ping-receiver:

192.168.xxx.
→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4)
ping-sender:

192.168.yyy.
→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)

30f566d1-9945-42be-b603-795d604b362f

6. Check the result on your virtual machine.

72 Chapter 2. Acknowledgement

Occopus, Release v1.10

ssh ...
cat /tmp/message.txt
Hello World!
→˓ I am the sender node created by Occopus.
cat /tmp/ping-result.txt
PING 192.168.xxx.
→˓xxx (192.168.xxx.xxx) 56(84) bytes of data.
64 bytes from 192.
→˓168.xxx.xxx: icmp_seq=1 ttl=64 time=2.74 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=2 ttl=64 time=0.793 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=4 ttl=64 time=0.882 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=5 ttl=64 time=0.786 ms

--- 192.168.xxx.xxx ping statistics ---
5 packets transmitted,
→˓ 5 received, 0% packet loss, time 4003ms
rtt min/
→˓avg/max/mdev = 0.786/1.215/2.749/0.767 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

2.9.5 Azure-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

• creating a node with basic contextualisation

• using the azure resource handler

Prerequisites

• accessing Microsoft Azure interface (Tenant ID, Client ID,
Client Secret, Subscription ID)

• resource group name inside Azure

• location to use inside Azure

• virtual machine specifications (size, publisher, offer, sku and
version)

Download

2.9. Resource plugins 73

Occopus, Release v1.10

You can download the example as tutorial.examples.azure-
helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
azure_helloworld_node set the followings in its
resource section:

• resource_group must contain the name of the resource
group to allocate resources in.

• location is the name of the location (region) to use.

• vm_size is the size of the VM to allocate.

• publisher is the name of the publisher of the image to use.

• offer is the offer of the image to use.

• sku is the sku of the image to use.

• version is the version of the image to use.

• username the name of the admin user to create.

• password the password to set for thr admin user.

• public_ip_needed optional, when set to True, a public IP
is allocated for the resource.

Important: You can get help on collecting identifiers for the
resources section at https://docs.microsoft.com/hu-hu/azure/
developer/python/azure-sdk-authenticate. Alternatively, de-
tailed explanation can be found at the node definition’s re-
source section of the User Guide.

'node_def:azure_helloworld_node':
-
resource:

type: azure_vm
␣

→˓ endpoint: https://management.azure.com
resource_

→˓group: replace_with_resource_group_name
location : replace_with_location
vm_size: replace_with_vm_size

␣
→˓ publisher : replace_with_publisher_name

offer : replace_with_offer
sku : replace_with_sku
version : replace_with_version

␣
→˓ username : replace_with_admin_username

␣
→˓ password : replace_with_admin_password

␣
→˓ # Optional - Existing VNet's name to use

(continues on next page)

74 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-helloworld.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-helloworld.tar.gz
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate

Occopus, Release v1.10

(continued from previous page)

#vnet_
→˓name: replace_with_virtual_network_name

␣
→˓ # Optional - Existing NIC's name to use

#nic_name: replace_with_nic_name
Optional - Subnet name

␣
→˓ #subnet_name: replace_with_subnet_name

Optional␣
→˓- Set to True if public IP is needed

#public_ip_needed : True

2. Make sure your authentication information is set correctly in
your authentication file. Setting authentication information
is described here.

3. Load the node definition for azure_helloworld_node
node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-azure-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

aaa.bbb.ccc.
→˓ddd (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

2.9. Resource plugins 75

Occopus, Release v1.10

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.6 Azure-Ping

This tutorial builds an infrastructure containing two nodes.
The ping-sender node will ping the ping-receiver node. The
sender node will store the outcome of ping in /tmp directory.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

• querying a node’s ip address and passing the address to an-
other

• using the azure resource handler

Prerequisites

• accessing Microsoft Azure interface (Tenant ID, Client ID,
Client Secret, Subscription ID)

• resource group name inside Azure

• location to use inside Azure

• virtual machine specifications (size, publisher, offer, sku and
version)

Download

You can download the example as tutorial.examples.azure-
ping .

Steps

1. Edit nodes/node_definitions.yaml. Both,
for azure_ping_receiver_node and for
azure_ping_sender_node set the followings in their
resource section:

• resource_group must contain the name of the resource
group to allocate resources in.

• location is the name of the location (region) to use.

• vm_size is the size of the VM to allocate.

• publisher is the name of the publisher of the image to use.

• offer is the offer of the image to use.

• sku is the sku of the image to use.

• version is the version of the image to use.

• username the name of the admin user to create.

• password the password to set for thr admin user.

76 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-ping.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-ping.tar.gz

Occopus, Release v1.10

• public_ip_needed optional, when set to True, a public IP
is allocated for the resource.

Important: You can get help on collecting identifiers for the
resources section at https://docs.microsoft.com/hu-hu/azure/
developer/python/azure-sdk-authenticate. Alternatively, de-
tailed explanation can be found at the node definition’s re-
source section of the User Guide.

'node_def:azure_ping_receiver_node':
-

resource:
type: azure_vm

␣
→˓ endpoint: https://management.azure.com

resource_
→˓group: replace_with_resource_group_name

location : replace_with_location
vm_size: replace_with_vm_size

␣
→˓ publisher : replace_with_publisher_name

offer : replace_with_offer
sku : replace_with_sku
version : replace_with_version

␣
→˓ username : replace_with_admin_username
␣

→˓ password : replace_with_admin_password
␣

→˓ # Optional - Existing VNet's name to use
#vnet_

→˓name: replace_with_virtual_network_name
␣

→˓ # Optional - Existing NIC's name to use
#nic_name: replace_with_nic_name
Optional - Subnet name

␣
→˓ #subnet_name: replace_with_subnet_name

Optional␣
→˓- Set to True if public IP is needed

#public_ip_needed : True
...

'node_def:azure_ping_sender_node':
-

resource:
type: azure_vm

␣
→˓ endpoint: https://management.azure.com

resource_
→˓group: replace_with_resource_group_name

location : replace_with_location
vm_size: replace_with_vm_size

(continues on next page)

2.9. Resource plugins 77

https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate

Occopus, Release v1.10

(continued from previous page)

␣
→˓ publisher : replace_with_publisher_name

offer : replace_with_offer
sku : replace_with_sku
version : replace_with_version

␣
→˓ username : replace_with_admin_username
␣

→˓ password : replace_with_admin_password
␣

→˓ # Optional - Existing VNet's name to use
#vnet_

→˓name: replace_with_virtual_network_name
␣

→˓ # Optional - Existing NIC's name to use
#nic_name: replace_with_nic_name
Optional - Subnet name

␣
→˓ #subnet_name: replace_with_subnet_name

Optional␣
→˓- Set to True if public IP is needed

#public_ip_needed : True

2. Make sure your authentication information is set correctly in
your authentication file. Setting authentication information
is described here.

3. Load the node definition for azure_ping_receiver_node
and azure_ping_sender_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-azure-ping.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of ip addresses:
ping-receiver:

192.168.xxx.
→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4) (continues on next page)

78 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

ping-sender:
192.168.yyy.

→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)

30f566d1-9945-42be-b603-795d604b362f

6. Check the result on your virtual machine.

ssh ...
cat /tmp/message.txt
Hello World!
→˓ I am the sender node created by Occopus.
cat /tmp/ping-result.txt
PING 192.168.xxx.
→˓xxx (192.168.xxx.xxx) 56(84) bytes of data.
64 bytes from 192.
→˓168.xxx.xxx: icmp_seq=1 ttl=64 time=2.74 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=2 ttl=64 time=0.793 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=4 ttl=64 time=0.882 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=5 ttl=64 time=0.786 ms

--- 192.168.xxx.xxx ping statistics ---
5 packets transmitted,
→˓ 5 received, 0% packet loss, time 4003ms
rtt min/
→˓avg/max/mdev = 0.786/1.215/2.749/0.767 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

2.9.7 Azure-ACI-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

• creating a node with basic contextualisation

• using the azure_aci resource handler

Prerequisites

2.9. Resource plugins 79

Occopus, Release v1.10

• accessing Microsoft Azure interface (Tenant ID, Client ID,
Client Secret, Subscription ID)

• resource group name inside Azure

• location to use inside Azure

Download

You can download the example as tutorial.examples.azure-
aci-helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
azure_aci_helloworld_node set the followings in
its resource section:

• resource_group must contain the name of the resource
group to allocate resources in.

• location is the name of the location (region) to use.

• memory must contain the amount of memory to allocate for
the container in GB (e.g. 1).

• cpu_cores must contain the amount of CPU cures to allo-
cate for the container in GB (e.g. 1).

Important: You can get help on collecting identifiers for the
resources section at https://docs.microsoft.com/hu-hu/azure/
developer/python/azure-sdk-authenticate. Alternatively, de-
tailed explanation can be found at the node definition’s re-
source section of the User Guide.

'node_def:azure_aci_helloworld_node':
-
resource:
type: azure_aci

␣
→˓ endpoint: https://management.azure.com

resource_
→˓group: replace_with_resource_group_name

location: replace_with_location
memory: replace_with_memory
cpu_cores: replace_with_cpu_cores
os_type: linux
image: alpine
network_type: Private
ports:

- 8080
contextualisation:
type: docker

␣
→˓ env: ["message={{variables.message}}"]

command: ["sh
→˓", "-c", "echo \"$message\" > /tmp/message.
→˓txt; while true; do sleep 1000; done"] (continues on next page)

80 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-aci-helloworld.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-aci-helloworld.tar.gz
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate

Occopus, Release v1.10

(continued from previous page)

health_check:
ping: False

2. Make sure your authentication information is set correctly in
your authentication file. Setting authentication information
is described here.

3. Load the node definition for
azure_aci_helloworld_node node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-azure-aci-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

aaa.bbb.ccc.
→˓ddd (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on the Azure portal. When you open the
Azure portal, you can find your container instance inside all
resources. From there, you can navigate to the connect panel
of the container, and can use /bin/sh to gain root shell access
inside the running container:

cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9. Resource plugins 81

Occopus, Release v1.10

2.9.8 Azure-ACI-Nginx

This tutorial builds an infrastructure containing two nodes.
The nginx-client node will fetch the HTML content served by
the nginx-server node, and store the outcome in the /tmp di-
rectory. The nginx-server node uses the Alpine Linux-based
Nginx image from the Docker hub, whereas the nginx-client
node is run on top of a stock Alpine Linux image, also from
the Docker hub.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

• querying a node’s ip address and passing the address to an-
other

• using the azure_aci resource handler

Prerequisites

• accessing Microsoft Azure interface (Tenant ID, Client ID,
Client Secret, Subscription ID)

• resource group name inside Azure

• location to use inside Azure

Download

You can download the example as tutorial.examples.azure-
aci-nginx .

Steps

1. Edit nodes/node_definitions.yaml.
Both, for azure_aci_nginx_node and for
azure_aci_client_node set the followings in their
resource section:

• resource_group must contain the name of the resource
group to allocate resources in.

• location is the name of the location (region) to use.

• memory must contain the amount of memory to allocate for
the container in GB (e.g. 1).

• cpu_cores must contain the amount of CPU cures to allo-
cate for the container in GB (e.g. 1).

Important: You can get help on collecting identifiers for the
resources section at https://docs.microsoft.com/hu-hu/azure/
developer/python/azure-sdk-authenticate. Alternatively, de-
tailed explanation can be found at the node definition’s re-
source section of the User Guide.

82 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-aci-nginx.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/azure-aci-nginx.tar.gz
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate
https://docs.microsoft.com/hu-hu/azure/developer/python/azure-sdk-authenticate

Occopus, Release v1.10

'node_def:azure_aci_nginx_node':
-

resource:
type: azure_aci

␣
→˓ endpoint: https://management.azure.com

resource_
→˓group: replace_with_resource_group_name

location: replace_with_location
memory: replace_with_memory
cpu_cores: replace_with_cpu_cores
os_type: linux
image: nginx:alpine
network_type: Public
ports:

- 80
...

'node_def:azure_aci_client_node':
-

resource:
type: azure_aci

␣
→˓ endpoint: https://management.azure.com

resource_
→˓group: replace_with_resource_group_name

location: replace_with_location
memory: replace_with_memory
cpu_cores: replace_with_cpu_cores
os_type: linux
image: alpine
network_type: Public
ports:

- 8080

2. Make sure your authentication information is set correctly in
your authentication file. Setting authentication information
is described here.

3. Load the node definition for azure_aci_nginx_node and
azure_aci_client_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-azure-aci-nginx.yaml

2.9. Resource plugins 83

Occopus, Release v1.10

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of ip addresses:
nginx-server:

192.168.xxx.
→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4)
nginx-client:

192.168.yyy.
→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)

30f566d1-9945-42be-b603-795d604b362f

#. Check the result on the Azure portal. When you open the
Azure portal, you can find your container instances inside all
resources. From there, you can navigate to the connect panel
of the nginx-client container, and can use /bin/sh to gain root
shell access inside the running container:

/ # ls -1 /tmp
message.txt
nginx_content.html
/ # cat /tmp/message.txt
Hello World!
→˓ I am the client node created by Occopus.

1. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

2.9.9 Docker-Helloworld

This tutorial builds an infrastructure containing a single node
implemented by a Docker container. The node will receive
information (i.e. a message string) through contextualisation.
The node will store this information in /root/message.txt
file.

Features

• creating a node with basic contextualisation

• using the docker resource handler

Prerequisites

• accessing a Docker host or a Swarm cluster (endpoint)

• having a docker image to be instantiated or using the one pre-
defined in this example (origin, image)

84 Chapter 2. Acknowledgement

Occopus, Release v1.10

• command to be executed on the image and the required envi-
ronment variables or using the one predefined in this example
(command, environment variables)

Important: Encrypted connection is not supported yet!

Download

You can download the example as tutorial.examples.docker-
helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
docker_helloworld_node set the followings in its
resource section:

• endpoint is the endpoint of your docker cluster (e.g.
tcp://1.2.3.4:2375 or unix://var/run/docker.sock).

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:docker_helloworld_node':
-

resource:
type: docker
␣

→˓endpoint: replace_with_your_docker_endpoint
origin: https://s3.lpds.

→˓sztaki.hu/docker/busybox_helloworld.tar
image: busybox_helloworld
tag: latest

2. Make sure your authentication information is set correctly in
your authentication file. The docker plugin in Occopus does
not apply authentication, however a dummy authentication
block is needed. The instructions for setting the authentica-
tion properly is described at the authentication page. There
you can download a default authentication file containing the
docker section already.

3. Load the node definition for docker_helloworld_node
node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

2.9. Resource plugins 85

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-helloworld.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-helloworld.tar.gz

Occopus, Release v1.10

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-docker-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

docker ps
CONTAINER ID ␣
→˓ IMAGE COMMAND ␣
→˓ CREATED STATUS␣
→˓ PORTS NAMES
13bb8c94b5f4 busybox_
→˓helloworld:latest "sh -c /root/start.
→˓sh" 3 seconds ago Up 2 seconds␣
→˓ admiring_joliot

docker␣
→˓exec -it 13bb8c94b5f4 cat /root/message.txt
Hello World! I have been created by Occopus.

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.10 Docker-Ping

This tutorial builds an infrastructure containing a two nodes
implemented by Docker containers. The ping-sender node
will ping the ping-receiver node to demonstrate the connec-
tion between the two nodes. The sender node will store the
outcome of ping in /root/ping-result.txt file.

Features

• creating two nodes with dependencies (i.e ordering or deploy-
ment)

86 Chapter 2. Acknowledgement

Occopus, Release v1.10

• querying a node’s ip address and passing the address to an-
other

• using the docker resource handler

Prerequisites

• accessing a Docker host or a Swarm cluster (endpoint)

• having a docker image to be instantiated or using the one pre-
defined in this example (origin, image)

• command to be executed on the image and the required envi-
ronment variables or using the one predefined in this example
(command, env)

Important: Encrypted connection is not supported yet!

Download

You can download the example as tutorial.examples.docker-
ping .

Steps

1. Edit nodes/node_definitions.yaml. Both,
for docker_ping_receiver_node and for
docker_ping_sender_node set the followings in their
resource section:

• endpoint is the endpoint of your docker cluster (e.g.
tcp://1.2.3.4:2375 or unix://var/run/docker.sock).

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:docker_ping_receiver_node':
-

resource:
type: docker
␣

→˓endpoint: replace_with_your_docker_endpoint
origin: https://s3.lpds.

→˓sztaki.hu/docker/busybox_helloworld.tar
image: busybox_helloworld
tag: latest

...
'node_def:docker_ping_sender_node':

-
resource:

type: docker
␣

→˓endpoint: replace_with_your_docker_endpoint
(continues on next page)

2.9. Resource plugins 87

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-ping.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-ping.tar.gz

Occopus, Release v1.10

(continued from previous page)

origin: https:/
→˓/s3.lpds.sztaki.hu/docker/busybox_ping.tar

image: busybox_ping
tag: latest

2. Make sure your authentication information is set correctly
in your authentication file. The docker plugin in Occopus
does not apply authentication, however a dummy authentica-
tion block is needed. Instructions for setting the authentica-
tion properly is described at the authentication page. There
you can download a default authentication file containing the
docker section already.

3. Load the node definition for
docker_ping_receiver_node and
docker_ping_sender_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-docker-ping.yaml

5. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
ping-receiver:
10.0.

→˓0.2 (552fe5b2-23a6-4c12-a4e2-077521027832)
ping-sender:
10.0.

→˓0.3 (eabc8d2f-401b-40cf-9386-4739ecd99fbd)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
docker ps
CONTAINER ID ␣
→˓ IMAGE COMMAND ␣
→˓ CREATED STATUS␣
→˓ PORTS NAMES (continues on next page)

88 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

4e83c45e8378 busybox_
→˓ping:latest "sh -c /root/start.
→˓sh" 16 seconds ago Up 15 seconds␣
→˓ romantic_brown
10b27bc4d978 busybox_
→˓helloworld:latest "sh -c /root/start.
→˓sh" 17 seconds ago Up 16 seconds␣
→˓ jovial_mayer

docker exec␣
→˓-it 4e83c45e8378 cat /root/ping-result.txt
PING 172.17.0.2 (172.17.0.2): 56 data bytes
64 bytes␣
→˓from 172.17.0.2: seq=0 ttl=64 time=0.195 ms
64 bytes␣
→˓from 172.17.0.2: seq=1 ttl=64 time=0.105 ms
64 bytes␣
→˓from 172.17.0.2: seq=2 ttl=64 time=0.124 ms
64 bytes␣
→˓from 172.17.0.2: seq=3 ttl=64 time=0.095 ms
64 bytes␣
→˓from 172.17.0.2: seq=4 ttl=64 time=0.085 ms

--- 172.17.0.2 ping statistics ---
5 packets transmitted,
→˓ 5 packets received, 0% packet loss
round-trip min/avg/max = 0.085/0.120/0.195 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.11 CloudSigma-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

• creating a node with basic contextualisation

• using the cloudsigma resource handler

Prerequisites

• accessing a cloud through CloudSigma interface (email,
password, endpoint)

• target cloud contains a base OS image with cloud-init support
(library drive identifier)

2.9. Resource plugins 89

Occopus, Release v1.10

Download

You can download the example as
tutorial.examples.cloudsigma-helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
cloudsigma_helloworld_node set the followings in
its resource section:

• endpoint is an url of a CloudSigma interface of a cloud (e.g.
https://zrh.cloudsigma.com/api/2.0).

• libdrive_id is the image id (e.g. 40aa6ce2-5198-4e6b-
b569-1e5e9fbaf488) on your CloudSigma cloud. Select an
image containing a base os installation with cloud-init sup-
port!

• cpu is the speed of CPU (e.g. 2000) in terms of MHz of your
VM to be instantiated.

• mem is the amount of RAM (e.g. 1073741824) in terms of
bytes to be allocated for your VM.

• vnc_password set the password for your VNC session.

• pubkeys optionally specifies the keypairs (e.g. f80c3ffb-
3ab5-461e-ad13-4b253da122bd) to be assigned to your VM.

• firewall_policy optionally specifies network policies
(you can define multiple security groups in the form of a list,
e.g. 8cd00652-c5c8-4af0-bdd6-0e5204c66dc5) of your VM.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:cloudsigma_helloworld_node':
-
resource:

type: cloudsigma
endpoint: replace_with_endpoint_

→˓of_cloudsigma_interface_of_your_cloud
libdrive_id: replace_with_id_

→˓of_your_library_drive_on_your_target_cloud
description:

cpu: 2000
mem: 1073741824
vnc_password: secret
pubkeys:

-
replace_

→˓with_id_of_your_pubkey_on_your_target_cloud
nics:

-
(continues on next page)

90 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cloudsigma-helloworld.tar.gz

Occopus, Release v1.10

(continued from previous page)

␣
→˓ firewall_policy: replace_with_id_
→˓of_your_network_policy_on_your_target_cloud

ip_v4_conf:
conf: dhcp

2. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

3. Load the node definition for
cloudsigma_helloworld_node node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-
→˓build infra-cloudsigma-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9. Resource plugins 91

Occopus, Release v1.10

2.9.12 CloudSigma-Ping

This tutorial builds an infrastructure containing two nodes.
The ping-sender node will ping the ping-receiver node. The
sender node will store the outcome of ping in /tmp directory.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

• querying a node’s ip address and passing the address to an-
other

• using the cloudsigma resource handler

Prerequisites

• accessing a cloud through CloudSigma interface (email,
password, endpoint)

• target cloud contains a base OS image with cloud-init support
(library drive identifier)

Download

You can download the example as
tutorial.examples.cloudsigma-ping .

Steps

1. Edit nodes/node_definitions.yaml. Both,
for cloudsigma_ping_receiver_node and for
cloudsigma_ping_sender_node set the followings
in their resource section:

• endpoint is an url of a CloudSigma interface of a cloud (e.g.
https://zrh.cloudsigma.com/api/2.0).

• libdrive_id is the image id (e.g. 40aa6ce2-5198-4e6b-
b569-1e5e9fbaf488) on your CloudSigma cloud. Select an
image containing a base os installation with cloud-init sup-
port!

• cpu is the speed of CPU (e.g. 2000 for 2GHz) in terms of
MHz of your VM to be instantiated.

• mem is the amount of RAM (e.g. 1073741824) in terms of
bytes to be allocated for your VM.

• vnc_password set the password for your VNC session.

• pubkeys optionally specifies the keypairs (e.g. f80c3ffb-
3ab5-461e-ad13-4b253da122bd) to be assigned to your VM.

• firewall_policy optionally specifies network policies
(you can define multiple security groups in the form of a list,
e.g. 8cd00652-c5c8-4af0-bdd6-0e5204c66dc5) of your VM.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-

92 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cloudsigma-ping.tar.gz

Occopus, Release v1.10

nation can be found at the node definition’s resource section
of the User Guide.

'node_def:cloudsigma_ping_receiver_node':
-
resource:

name: my_cloudsigma_cloud
type: cloudsigma
endpoint: replace_with_endpoint_

→˓of_cloudsigma_interface_of_your_cloud
libdrive_id: replace_with_id_

→˓of_your_library_drive_on_your_target_cloud
description:

cpu: 2000
mem: 1073741824
vnc_password: secret
pubkeys:

-
replace_

→˓with_id_of_your_pubkey_on_your_target_cloud
nics:

-
␣

→˓ firewall_policy: replace_with_id_
→˓of_your_network_policy_on_your_target_cloud

ip_v4_conf:
conf: dhcp
ip: null

runtime:
␣

→˓ interface_type: public
...

'node_def:cloudsigma_ping_sender_node':
-
resource:

name: my_cloudsigma_cloud
type: cloudsigma
endpoint: replace_with_endpoint_

→˓of_cloudsigma_interface_of_your_cloud
libdrive_id: replace_with_id_

→˓of_your_library_drive_on_your_target_cloud
description:

cpu: 2000
mem: 1073741824
vnc_password: secret
pubkeys:

-
replace_

→˓with_id_of_your_pubkey_on_your_target_cloud
nics:

-
␣

→˓ firewall_policy: replace_with_id_
→˓of_your_network_policy_on_your_target_cloud

(continues on next page)

2.9. Resource plugins 93

Occopus, Release v1.10

(continued from previous page)

ip_v4_conf:
conf: dhcp
ip: null

runtime:
␣

→˓ interface_type: public
...

2. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

3. Load the node definition for
cloudsigma_ping_receiver_node and
cloudsigma_ping_sender_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-cloudsigma-ping.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of ip addresses:
ping-receiver:

192.168.xxx.
→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4)
ping-sender:

192.168.yyy.
→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)

30f566d1-9945-42be-b603-795d604b362f

6. Check the result on your virtual machine.

ssh ...
cat /tmp/message.txt
Hello World!
→˓ I am the sender node created by Occopus.

(continues on next page)

94 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

cat /tmp/ping-result.txt
PING 192.168.xxx.
→˓xxx (192.168.xxx.xxx) 56(84) bytes of data.
64 bytes from 192.
→˓168.xxx.xxx: icmp_seq=1 ttl=64 time=2.74 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=2 ttl=64 time=0.793 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=4 ttl=64 time=0.882 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=5 ttl=64 time=0.786 ms

--- 192.168.xxx.xxx ping statistics ---
5 packets transmitted,
→˓ 5 received, 0% packet loss, time 4003ms
rtt min/
→˓avg/max/mdev = 0.786/1.215/2.749/0.767 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

2.9.13 CloudBroker-Helloworld

This tutorial builds an infrastructure containing a single node.
The node will receive information (i.e. a message string)
through contextualisation. The node will store this informa-
tion in /tmp directory.

Features

• creating a node with basic contextualisation

• using the cloudbroker resource handler

Prerequisites

• accessing a CloudBroker Platform instance (URL, email and
password)

• Deployment, Instance type properly registered on the Cloud-
Broker platform

Download

You can download the example as
tutorial.examples.cloudbroker-helloworld .

Steps

1. Edit nodes/node_definitions.yaml. For
cloudbroker_helloworld_node set the followings
in its resource section:

2.9. Resource plugins 95

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cloudbroker-helloworld.tar.gz

Occopus, Release v1.10

• endpoint is the url of the CloudBroker REST API interface
(e.g. https://cola-prototype.cloudbroker.com).

• deployment_id is the id of a preregistered deployment in
CloudBroker referring to a cloud, image, region, etc. Make
sure the image contains a base os (preferably Ubuntu) instal-
lation with cloud-init support! The id is the UUID of the
deployment which can be seen in the address bar of your
browser when inspecting the details of the deployment.

• instance_type_id is the id of a preregistered instance type
in CloudBroker referring to the capacity of the virtual ma-
chine to be deployed. The id is the UUID of the instance type
which can be seen in the address bar of your browser when
inspecting the details of the instance type.

• key_pair_id is the id of a preregistered ssh public key in
CloudBroker which will be deployed on the virtual machine.
The id is the UUID of the key pair which can be seen in the
address bar of your browser when inspecting the details of
the key pair.

• opened_port is one or more ports to be opened to the world.
This is a string containing numbers separated by comma.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

...
resource:
type: cloudbroker
endpoint: replace_

→˓with_endpoint_of_cloudbroker_interface
description:
deployment_id: replace_with_deployment_id
instance_

→˓type_id: replace_with_instance_type_id
key_pair_id: replace_with_keypair_id
opened_port: replace_

→˓with_list_of_ports_separated_with_comma
contextualisation:
...

2. Make sure your authentication information is set correctly
in your authentication file. You must set your email and
password in the authentication file. Setting authentication
information is described here.

3. Load the node definition for
cloudbroker_helloworld_node node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is

96 Chapter 2. Acknowledgement

Occopus, Release v1.10

necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-
→˓build infra-cloudbroker-helloworld.yaml

5. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
helloworld:
192.168.xxx.

→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

6. Check the result on your virtual machine.

ssh ...
cat /tmp/helloworld.txt
Hello World! I have been created by Occopus

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.9.14 CloudBroker-Ping

This tutorial sets up an infrastructure containing two nodes on
the CloudBroker Platform. The ping-sender node will ping
the ping-receiver node. The node will store the outcome of
ping in /tmp directory.

Features

• creating two nodes with dependencies (i.e. ordering of de-
ployment)

• querying a node’s ip address and passing the address to an-
other

• using the cloudbroker resource handler

Prerequisites

2.9. Resource plugins 97

Occopus, Release v1.10

• accessing a CloudBroker Platform instance (URL, username
and password)

• Software, Executabe, Resource, Region and Instance type
properly registered on the CloudBroker platform

Download

You can download the example as
tutorial.examples.cloudbroker-ping .

Steps

1. Edit nodes/node_definitions.yaml. Both,
for cloudbroker_ping_receiver_node and for
cloudbroker_ping_sender_node set the followings
in their resource section:

• endpoint is the url of the CloudBroker REST API interface
(e.g. https://cola-prototype.cloudbroker.com).

• deployment_id is the id of a preregistered deployment in
CloudBroker referring to a cloud, image, region, etc. Make
sure the image contains a base os (preferably Ubuntu) instal-
lation with cloud-init support! The id is the UUID of the
deployment which can be seen in the address bar of your
browser when inspecting the details of the deployment.

• instance_type_id is the id of a preregistered instance type
in CloudBroker referring to the capacity of the virtual ma-
chine to be deployed. The id is the UUID of the instance type
which can be seen in the address bar of your browser when
inspecting the details of the instance type.

• key_pair_id is the id of a preregistered ssh public key in
CloudBroker which will be deployed on the virtual machine.
The id is the UUID of the key pair which can be seen in the
address bar of your browser when inspecting the details of
the key pair.

• opened_port is one or more ports to be opened to the world.
This is a string containing numbers separated by comma.

Important: You can get help on collecting identifiers for the
resources section at this page ! Alternatively, detailed expla-
nation can be found at the node definition’s resource section
of the User Guide.

'node_def:cloudbroker_ping_receiver_node':
-
resource:
type: cloudbroker
endpoint: replace_

→˓with_endpoint_of_cloudbroker_interface
description:

␣
→˓ deployment_id: replace_with_deployment_id

(continues on next page)

98 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cloudbroker-ping.tar.gz

Occopus, Release v1.10

(continued from previous page)

instance_
→˓type_id: replace_with_instance_type_id

key_pair_id: replace_with_keypair_id
opened_port: replace_

→˓with_list_of_ports_separated_with_comma
contextualisation:
type: cloudinit
context_template: !yaml_import

␣
→˓ url: file://cloud_init_ping_receiver.yaml
'node_def:cloudbroker_ping_sender_node':
-
resource:
type: cloudbroker
endpoint: replace_

→˓with_endpoint_of_cloudbroker_interface
description:

␣
→˓ deployment_id: replace_with_deployment_id

instance_
→˓type_id: replace_with_instance_type_id

key_pair_id: replace_with_keypair_id
opened_port: replace_

→˓with_list_of_ports_separated_with_comma
contextualisation:
type: cloudinit
context_template: !yaml_import

␣
→˓ url: file://cloud_init_ping_sender.yaml

2. Make sure your authentication information is set correctly
in your authentication file. You must set your email and
password in the authentication file. Setting authentication
information is described here.

3. Load the node definition for
cloudbroker_ping_receiver_node and
cloudbroker_ping_sender_node node into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-cloudbroker-ping.yaml

5. After successful finish, the nodes with ip address and

2.9. Resource plugins 99

Occopus, Release v1.10

node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
ping-receiver:
192.168.xxx.

→˓xxx (f639a4ad-e9cb-478d-8208-9700415b95a4)
ping-sender:
192.168.yyy.

→˓yyy (99bdeb76-2295-4be7-8f14-969ab9d222b8)
30f566d1-9945-42be-b603-795d604b362f

6. Check the result on your virtual machine.

ssh ...
cat /tmp/message.txt
Hello World!
→˓ I am the sender node created by Occopus.
cat /tmp/ping-result.txt
PING 192.168.xxx.
→˓xxx (192.168.xxx.xxx) 56(84) bytes of data.
64 bytes from 192.
→˓168.xxx.xxx: icmp_seq=1 ttl=64 time=2.74 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=2 ttl=64 time=0.793 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=4 ttl=64 time=0.882 ms
64 bytes from 192.168.
→˓xxx.xxx: icmp_seq=5 ttl=64 time=0.786 ms

--- 192.168.xxx.xxx ping statistics ---
5 packets transmitted,
→˓ 5 received, 0% packet loss, time 4003ms
rtt min/
→˓avg/max/mdev = 0.786/1.215/2.749/0.767 ms

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build.

occopus-destroy␣
→˓-i 30f566d1-9945-42be-b603-795d604b362f

100 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.10 Config manager plugins

In this section more advanced solutions will be shown. The
examples will introduce complex infrastructures or will in-
troduce more complex features of the Occopus tool.

Please, note that the following examples require a properly
configured Occopus, therefore we suggest to continue this
section if you already followed the instructions written in the
Installation section.

2.10.1 Chef-Apache2

This tutorial uses Chef as a configuration management tool
to deploy a one-node infrastructure containing an Apache2
web server.

Features

• using Chef as a configuration management tool to deploy ser-
vices

• assembling the run-lists of the chef-clients on the nodes

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g. EC2, Azure, Nova, etc.)

• target cloud contains a base OS image with cloud-init support
(image id, instance type)

• accessing the Chef server as user by Occopus (user name,
user key)

• accessing the Chef server as client by the nodes (validator
client name, validator client key)

• apache2 community recipe (available at Chef Supermarket)
and its dependencies uploaded to target Chef Server

Download

You can download the example as tutorial.examples.chef-
apache2 .

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

2.10. Config manager plugins 101

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/chef-apache2.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/chef-apache2.tar.gz

Occopus, Release v1.10

The downloadable package for this example contains a re-
source template for the EC2 plugin.

2. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

3. Edit nodes/node_definitions.yaml. Configure the
config_management. Set the endpoint to the url of your
Chef Server.

'node_def:chef_apache2_node':
-

resource:
...

...
config_management:
type: chef

␣
→˓ endpoint: replace_with_url_of_chef_server

run_list:
- recipe[apache2]

...

4. Edit the nodes/cloud_init_chef.yaml contextualization
file. Set the following attributes:

• server_url is the url of your Chef Server (e.g.
“https://chef.yourorg.com:4000”).

• validation_name the name of the validator client through
which nodes register to your chef server.

• validation_key the public key belonging to the validator
client.

Example:

validation_name: "yourorg-validator"
validation_key: |

-----BEGIN RSA PRIVATE KEY-----
YOUR-ORGS-VALIDATION-KEY-HERE
-----END RSA PRIVATE KEY-----

Important: Make sure you do not mix the validator
client with user belonging to the Chef Server.

...
chef:
install_type: omnibus
omnibus_url:␣

→˓"https://www.opscode.com/chef/install.sh"
force_install: false

(continues on next page)

102 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

server_
→˓url: "replace_with_your_chef_server_url"
environment: {{infra_id}}
node_name: {{node_id}}
validation_name:␣

→˓"replace_with_chef_validation_client_name"
validation_key: |

␣
→˓ replace_with_chef_validation_client_key
...

Important: Do not modify the value of “environment” and
“node_name” attributes!

Note: For further explanation of the keywords, please read
the cloud-init documentation!

5. Make sure your authentication information is set correctly
in your authentication file. You must set your authentica-
tion data for the resource you would like to use, as well
as the authentication data for the config_management sec-
tion. Setting authentication information for both is described
here.

Important: Do not forget to set your Chef credentials!

6. Load the node definitions into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

7. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-chef-apache2.yaml

8. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

2.10. Config manager plugins 103

http://cloudinit.readthedocs.org/en/latest/topics/examples.html#install-and-run-chef-recipes

Occopus, Release v1.10

List of nodes/ip addresses:
apache2:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
14032858-d628-40a2-b611-71381bd463fa

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.10.2 Chef-Wordpress

This tutorial uses Chef as a configuration management tool to
deploy a two-node infrastructure containing a MySQL server
node and a Wordpress node. The Wordpress node will con-
nect to the MySQL database.

Features

• using Chef as a configuration management tool to deploy ser-
vices

• passing variables to Chef through Occopus

• assembling the run-lists of the chef-clients on the nodes

• checking MySQL database availability on a node

• checking url availability on a node

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g. EC2, Azure, Nova, etc.)

• target cloud contains a base OS image with cloud-init support
(image id, instance type)

• accessing the Chef server as user by Occopus (user name,
user key)

• accessing the Chef server as client by the nodes (validator
client name, validator client key)

• wordpress community recipe (available at Chef Supermar-
ket) and its dependencies uploaded to target Chef Server

• database-setup recipe (provided in example package at
Download) uploaded to target Chef server

Download

You can download the example as tutorial.examples.chef-
wordpress .

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

104 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/chef-wordpress.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/chef-wordpress.tar.gz

Occopus, Release v1.10

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the EC2 plugin.

2. Edit nodes/node_definitions.yaml. For each node,
configure the config_management. Set the endpoint to
the url of your Chef Server.

'node_def:chef_mysql_node':
-

resource:
...

...
config_management:
type: chef

␣
→˓ endpoint: replace_with_url_of_chef_server

run_list:
- recipe[database-setup::db]

...
'node_def:chef_wordpress_node':

-
resource:

...
...
config_management:
type: chef

␣
→˓ endpoint: replace_with_url_of_chef_server

run_list:
- recipe[wordpress]

...

3. Edit the nodes/cloud_init_chef.yaml contextualization
file. Set the following attributes:

• server_url is the url of your Chef Server (e.g.
“https://chef.yourorg.com:4000”).

• validation_name the name of the validator client through
which nodes register to your chef server.

• validation_key the public key belonging to the validator
client.

Example:

validation_name: "yourorg-validator"
(continues on next page)

2.10. Config manager plugins 105

Occopus, Release v1.10

(continued from previous page)

validation_key: |
-----BEGIN RSA PRIVATE KEY-----
YOUR-ORGS-VALIDATION-KEY-HERE
-----END RSA PRIVATE KEY-----

Important: Make sure you do not mix the validator
client with user belonging to the Chef Server.

...
chef:
install_type: omnibus
omnibus_url:␣

→˓"https://www.opscode.com/chef/install.sh"
force_install: false
server_

→˓url: "replace_with_your_chef_server_url"
environment: {{infra_id}}
node_name: {{node_id}}
validation_name:␣

→˓"replace_with_chef_validation_client_name"
validation_key: |

␣
→˓ replace_with_chef_validation_client_key
...

Important: Do not modify the value of “environment” and
“node_name” attributes!

Note: For further explanation of the keywords, please read
the cloud-init documentation!

4. Edit infra-chef-wordpress.yaml. Set your desired root
password, database name, username, and user password for
your MySQL database in the variables section. These param-
eters will be applied when creating the mysql database.

...
variables:
mysql_root_password:␣

→˓replace_with_database_root_password
mysql_

→˓database_name: replace_with_database_name
mysql_dbuser_

→˓username: replace_with_database_username
mysql_dbuser_password:␣

→˓replace_with_database_user_password

5. Make sure your authentication information is set correctly

106 Chapter 2. Acknowledgement

http://cloudinit.readthedocs.org/en/latest/topics/examples.html#install-and-run-chef-recipes

Occopus, Release v1.10

in your authentication file. You must set your authentica-
tion data for the resource you would like to use, as well
as the authentication data for the config_management sec-
tion. Setting authentication information for both is described
here.

Important: Do not forget to set your Chef credentials!

6. Load the node definitions into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

7. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-chef-wordpress.yaml

8. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
mysql-server:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
wordpress:

192.168.xxx.
→˓xxx (894fe127-28c9-4c8f-8c5f-2f120c69b9c3)
14032858-d628-40a2-b611-71381bd463fa

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.10. Config manager plugins 107

Occopus, Release v1.10

2.10.3 PuppetSolo-Wordpress

This tutorial uses Puppet as a configuration management tool
in a server-free mode to deploy a two-node infrastructure con-
taining a MySQL server node and a Wordpress node. The
Wordpress node will connect to the MySQL database.

Features

• using server-free Puppet as a configuration management tool
to deploy services

• defining puppet manifests and modules

• passing attributes to Puppet through Occopus

• checking MySQL database availability on a node

• checking url availability on a node

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g. EC2, Azure, Nova, etc.)

• target cloud contains a base OS image with cloud-init support
(image id, instance type)

• wordpress-init puppet recipe (provided in example pack-
age at Download)

• mysql-init puppet recipe (provided in example package at
Download)

Download

You can download the example as tutorial.examples.puppet-
solo-wordpress .

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the EC2 plugin.

2. Edit infra-puppet-solo-wordpress.yaml. Set your de-
sired root password, database name, username, and user pass-
word for your MySQL database in the variables section.
These parameters will be applied when creating the mysql
database and also used by wordpress node when connecting
to mysql.

108 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/puppet-solo-wordpress.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/puppet-solo-wordpress.tar.gz

Occopus, Release v1.10

...
variables:
mysql_root_password:␣

→˓replace_with_database_root_password
mysql_

→˓database_name: replace_with_database_name
mysql_dbuser_

→˓username: replace_with_database_username
mysql_dbuser_password:␣

→˓replace_with_database_user_password

3. Load the node definitions into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-
→˓build infra-puppet-solo-wordpress.yaml

5. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
mysql-server:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
wordpress:

192.168.xxx.
→˓xxx (894fe127-28c9-4c8f-8c5f-2f120c69b9c3)
14032858-d628-40a2-b611-71381bd463fa

6. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.10. Config manager plugins 109

Occopus, Release v1.10

2.11 Building clusters

2.11.1 Docker-Swarm cluster

This tutorial sets up a complete Docker infrastructure with
Swarm, Docker and Consul software components. It contains
a master node and predefined number of worker nodes. The
worker nodes receive the ip of the master node and attach to
the master node to form a cluster. Finally, the docker cluster
can be used with any standard tool talking the docker protocol
(on port 2375).

Features

• creating two types of nodes through contextualisation

• passing ip address of a node to another node

• using the cloudsigma resource handler

• utilising health check against a predefined port

• using parameters to scale up worker nodes

Prerequisites

• accessing an Occopus compatible interface

• target cloud contains an Ubuntu 18.04 image with cloud-init
support

Download

You can download the example as tutorial.examples.docker-
swarm .

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Cloudsigma plugin.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

110 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-swarm.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/docker-swarm.tar.gz

Occopus, Release v1.10

Protocol Port(s) Service
TCP 2375 web listening port (configurable*)
TCP 2377 for cluster management & raft sync communications
TCP and UDP 7946 for “control plane” gossip discovery communication between all nodes

Note: Do not forget to open the ports which are needed for
your Docker application!

3. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

4. Load the node definition for dockerswarm_master_node
and dockerswarm_worker_node nodes into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition (file) changes!

occopus-import nodes/node_definitions.yaml

5. Update the number of worker nodes if necessary. For this,
edit the infra-docker-swarm.yaml file and modify the
min parameter under the scaling keyword. Currently, it is
set to 2.

- &W
name: worker
type: dockerswarm_worker_node
scaling:

min: 2

6. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-docker-swarm.yaml

Note: It may take a few minutes until the services on the
master node come to live. Please, be patient!

7. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

2.11. Building clusters 111

Occopus, Release v1.10

List of nodes/ip addresses:
master:
<ip-address>
→˓ (dfa5f4f5-7d69-432e-87f9-a37cd6376f7a)
worker:
<ip-address>
→˓ (cae40ed8-c4f3-49cd-bc73-92a8c027ff2c)
<ip-address>
→˓ (8e255594-5d9a-4106-920c-62591aabd899)
77cb026b-2f81-46a5-87c5-2adf13e1b2d3

8. Check the result by submitting docker commands to the
docker master node!

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 77cb026b-2f81-46a5-87c5-2adf13e1b2d3

2.11.2 Kubernetes cluster

Note: This Occopus-based version is now deprecated in favor of the Kubernetes Reference Architecture based on
Terraform and Ansible.

This tutorial sets up a complete Kubernetes infrastructure
with Kubernetes Dashboard and Helm package manager. It
contains a master node and predefined number of worker
nodes. The worker nodes receive the ip of the master node
and attach to the master node to form a cluster. Finally, the
Kubernetes cluster can be used with any standard tool talking
the Kubernetes API server protocol (on port 6443).

Features

• creating two types of nodes through contextualisation

• passing ip address of a node to another node

• using the nova resource handler

• utilising health check against a predefined port

• using parameters to scale up worker nodes

Prerequisites

• accessing an Occopus compatible interface

• target cloud contains an Ubuntu 18.04 image with cloud-init
support

Download

You can download the example as tuto-
rial.examples.kubernetes .

112 Chapter 2. Acknowledgement

https://git.sztaki.hu/science-cloud/reference-architectures/kubernetes
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/kubernetes-cluster.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/kubernetes-cluster.tar.gz

Occopus, Release v1.10

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Cloudsigma plugin.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 2379-2380 etcd server client API
TCP 6443 Kubernetes API server
TCP 10250 Kubelet API
TCP 10251 kube-scheduler
TCP 10252 kube-controller-manager
TCP 10255 read-only kubelet API
TCP 30000-32767 NodePort Services

Note: Do not forget to open the ports which are needed for
your Kubernetes application!

3. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

4. Load the node definition for kubernetes_master_node
and kubernetes_slave_node nodes into the database.

Note: Make sure the proper virtualenv is activated! (source
occopus/bin/activate)

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is

2.11. Building clusters 113

Occopus, Release v1.10

necessary whenever the node definition (file) changes!

occopus-import nodes/node_definitions.yaml

5. Update the number of worker nodes if necessary. For this,
edit the infra-kubernetes.yaml file and modify the min
parameter under the scaling keyword. Currently, it is set to
2.

- &W
name: kubernetes-slave
type: kubernetes_slave_node
scaling:

min: 2

6. Start deploying the infrastructure.

occopus-build infra-kubernetes.yaml

Note: It may take a few minutes until the services on the
master node come to live. Please, be patient!

7. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
master:

<ip-address>
→˓ (dfa5f4f5-7d69-432e-87f9-a37cd6376f7a)
worker:

<ip-address>
→˓ (cae40ed8-c4f3-49cd-bc73-92a8c027ff2c)

<ip-address>
→˓ (8e255594-5d9a-4106-920c-62591aabd899)
77cb026b-2f81-46a5-87c5-2adf13e1b2d3

8. You can check the health and statistics of the cluster. Please
login to the master node via SSH connection.

Note: Before you run the command below, please make sure
you use the correct user (kubeuser).

Switch to kubeuser:

$ sudo su - kubeuser

Check the nodes added to the cluster with the following com-
mand:

114 Chapter 2. Acknowledgement

Occopus, Release v1.10

$ kubectl get nodes
NAME ␣
→˓ ␣
→˓ STATUS ROLES AGE VERSION
occopus-kubernetes-
→˓cluster-a67dcbea-kubernetes-master-
→˓90d7cfdd Ready master 12m v1.18.3
occopus-kubernetes-
→˓cluster-a67dcbea-kubernetes-slave-a8962b51␣
→˓ Ready worker 4m7s v1.18.3
occopus-kubernetes-
→˓cluster-a67dcbea-kubernetes-slave-ed210ec4␣
→˓ Ready worker 4m7s v1.18.3

Ensure that Kubernetes services have been set up correctly.

$ kubectl get pods --all-namespaces
NAMESPACE ␣
→˓ NAME ␣
→˓ ␣
→˓ READY STATUS RESTARTS AGE
kube-system ␣
→˓ coredns-66bff467f8-ltkkc ␣
→˓ ␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ coredns-66bff467f8-ndh88 ␣
→˓ ␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ etcd-occopus-kubernetes-cluster-a67dcbea-
→˓kubernetes-master-90d7cfdd ␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ kube-apiserver-occopus-kubernetes-cluster-
→˓a67dcbea-kubernetes-master-90d7cfdd␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓kube-controller-manager-occopus-kubernetes-
→˓cluster-a67dcbea-kubernetes-master-
→˓90d7cfdd 1/1 Running 0 12m
kube-system ␣
→˓ kube-flannel-ds-amd64-5ptjb ␣
→˓ ␣
→˓ 1/1 Running 0 4m23s
kube-system ␣
→˓ kube-flannel-ds-amd64-dfczs ␣
→˓ ␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ kube-flannel-ds-amd64-dqjg2 ␣
→˓ ␣
→˓ 1/1 Running 0 4m23s

(continues on next page)

2.11. Building clusters 115

Occopus, Release v1.10

(continued from previous page)

kube-system ␣
→˓ kube-proxy-f8czw ␣
→˓ ␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ kube-proxy-hlvd6 ␣
→˓ ␣
→˓ 1/1 Running 0 4m23s
kube-system ␣
→˓ kube-proxy-vlwk2 ␣
→˓ ␣
→˓ 1/1 Running 0 4m23s
kube-system ␣
→˓ kube-scheduler-occopus-kubernetes-cluster-
→˓a67dcbea-kubernetes-master-90d7cfdd␣
→˓ 1/1 Running 0 12m
kube-system ␣
→˓ tiller-deploy-55bbcfbbc8-fj8mm ␣
→˓ ␣
→˓ 1/1 Running 0 9m16s
kubernetes-dashboard␣
→˓ dashboard-metrics-scraper-6b4884c9d5-
→˓w6rx6 ␣
→˓ 1/1 Running 0 12m
kubernetes-dashboard␣
→˓ kubernetes-dashboard-64794c64b8-sb9m6␣
→˓ ␣
→˓ 1/1 Running 0 12m

You can access␣
→˓Dashboard at ``http://localhost:8001/
→˓api/v1/namespaces/kubernetes-
→˓dashboard/services/https:kubernetes-
→˓dashboard:/proxy/#/login``.

On the␣
→˓login page please click on the SKIP button.

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 77cb026b-2f81-46a5-87c5-2adf13e1b2d3

116 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.11.3 Slurm cluster

Slurm is an open source, fault-tolerant, and highly scalable
cluster management and job scheduling system for large and
small Linux clusters. Slurm requires no kernel modifications
for its operation and is relatively self-contained. As a cluster
workload manager, Slurm has three key functions:

• First, it allocates exclusive and/or non-exclusive access to re-
sources (compute nodes) to users for some duration of time
so they can perform work.

• Second, it provides a framework for starting, executing, and
monitoring work (normally a parallel job) on the set of allo-
cated nodes.

• Finally, it arbitrates contention for resources by managing a
queue of pending work.

This tutorial sets up a complete Slurm (version 19.05.5) in-
frastructure. It contains a Slurm Management (master) node
and Slurm Compoute (worker) nodes, which can be scaled
up or down.

Fig. 1: Figure 2. Slurm cluster architecture

Features

• creating two types of nodes through contextualisation

• utilising health check against a predefined port

• using cron jobs to scale Slurm Compute nodes automatically

Prerequisites

2.11. Building clusters 117

Occopus, Release v1.10

• accessing an Occopus compatible interface

• target cloud contains an Ubuntu 18.04 image with cloud-init
support

Download

You can download the example as tutorial.examples.slurm .

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the nova plugin.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 111 RPCbind
TCP 2049 NFS Server
TCP 6817 SlurmDbDPort (Master)
TCP 6818 SlurmDPort (Worker)
TCP 6819 SlurmctldPort (Master)

Note: The Slurm Master doesn’t work without any worker
nodes. You can test the cluster with the sinfo command. If
the Master node doesn’t recognise this command, you have
to wait for the first worker node.

3. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

4. Load the node definition for slurm_master_node and
slurm_worker_node nodes into the database.

118 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/slurm-cluster.tar.gz

Occopus, Release v1.10

Note: Make sure the proper virtualenv is activated! (source
occopus/bin/activate)

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition (file) changes!

occopus-import nodes/node_definitions.yaml

5. Update the number of worker nodes if necessary. For this,
edit the infra-slurm-cluster file and modify the min pa-
rameter under the scaling keyword. Currently, it is set to
2.

- &W
name: slurm-worker
type: slurm_worker_node
scaling:

min: 2

6. Start deploying the infrastructure.

occopus-build infra-slurm-cluster.yaml

Note: It may take a few minutes until the services on the
master node come to live. Please, be patient!

7. After successful finish, the node with ip address and node
id are listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
master:

<ip-address>
→˓ (dfa5f4f5-7d69-432e-87f9-a37cd6376f7a)
worker:

<ip-address>
→˓ (cae40ed8-c4f3-49cd-bc73-92a8c027ff2c)

<ip-address>
→˓ (8e255594-5d9a-4106-920c-62591aabd899)
77cb026b-2f81-46a5-87c5-2adf13e1b2d3

8. You can check the health and statistics of the cluster. Please
login to the master node via SSH connection.

Note: Before you run the command below, please make sure

2.11. Building clusters 119

Occopus, Release v1.10

at least one worker node is connected to the master.

By default, sinfo lists the partitions that are available.

sinfo
PARTITION␣
→˓AVAIL TIMELIMIT NODES STATE NODELIST
debug* up infinite ␣
→˓ 2 idle occopus-slurm-cluster-8769d296-
→˓slurm-worker-69ed479f,occopus-slurm-
→˓cluster-8769d296-slurm-worker-ef6cc071

Please run the following command on the master node to
check the status of the slurm controller daemon status.

sudo systemctl status slurmctld
? slurmctld.service - Slurm controller daemon

Loaded:␣
→˓loaded (/lib/systemd/system/slurmctld.
→˓service; enabled; vendor preset: enabled)

Active: active (running) since␣
→˓Wed 2021-07-07 17:39:08 CEST; 1min 5s ago

Docs: man:slurmctld(8)
Process: 13401␣

→˓ExecStart=/usr/sbin/slurmctld $SLURMCTLD_
→˓OPTIONS (code=exited, status=0/SUCCESS)
Main PID: 13423 (slurmctld)

Tasks: 11
Memory: 2.2M
CGroup: /system.slice/slurmctld.service

L¦13423 /usr/sbin/slurmctld

You can also check the slurm daemon status on any of the
worker nodes with the following command.

sudo systemctld status slurmd
? slurmd.service - Slurm node daemon

␣
→˓Loaded: loaded (/lib/systemd/system/slurmd.
→˓service; enabled; vendor preset: enabled)

Active: active (running) since␣
→˓Wed 2021-07-07 17:39:01 CEST; 3min 44s ago

Docs: man:slurmd(8)
Process:␣

→˓7491 ExecStart=/usr/sbin/slurmd $SLURMD_
→˓OPTIONS (code=exited, status=0/SUCCESS)
Main PID: 7493 (slurmd)

Tasks: 1
Memory: 1.6M
CGroup: /system.slice/slurmd.service

L¦7493 /usr/sbin/slurmd

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-destroy

120 Chapter 2. Acknowledgement

Occopus, Release v1.10

occopus-destroy␣
→˓-i 77cb026b-2f81-46a5-87c5-2adf13e1b2d3

User management

In the Slurm you can use the sacctmgr command for user
management. First, you need to create an account. An ac-
count is similar to a UNIX group. An account may contain
multiple users, or just a single user. Accounts may be orga-
nized as a hierarchical tree. A user may belong to multiple
accounts, but must have a DefaultAccount.

Create new account
sacctmgr add account␣
→˓sztaki Description="Any departments"
Show all accounts:
sacctmgr show account

Note: By default you are the root user in Slurm, so, you have to use sudo before the slurm commands if you use the
ubuntu user instead of root.

Important: Before you create a Slurm user, you have to create a real unix user too!

2.11.4 DataAvenue cluster

Data Avenue is a data storage management service that en-
ables to access different types of storage resources (including
S3, sftp, GridFTP, iRODS, SRM servers) using a uniform in-
terface. The provided REST API allows of performing all the
typical storage operations such as creating folders/buckets,
renaming or deleting files/folders, uploading/downloading
files, or copying/moving files/folders between different stor-
age resources, respectively, even simply using ‘curl’ from
command line. Data Avenue automatically translates users’
REST commands to the appropriate storage protocols, and
manages long-running data transfers in the background.

In this tutorial we establish a cluster with two nodes types. On
the DataAvenue node the DataAvenue application will run,
and an S3 storage will run, in order to be able to try DataAv-
enue file transfer software such as making buckets, download
or copy files. We used MinIO and Docker components to
build-up the cluster.

Features

• creating two types of nodes through contextualisation

• using the nova resource handler

Prerequisites

• accessing an Occopus compatible interface

2.11. Building clusters 121

Occopus, Release v1.10

• target cloud contains an Ubuntu image with cloud-init sup-
port

Download

You can download the example as
tutorial.examples.dataavenue-cluster .

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the nova plugin.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 80 HTTP
TCP 443 HTTPS
TCP 8080 DA service

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Optionally edit the “variables” section of the
infra-dataavenue.yaml file. Set the following at-
tributes:

• access_key is the access key of the S3 storage user

• secret_key is the secret key of the S3 storage user

5. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is

122 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/dataavenue-cluster.tar.gz

Occopus, Release v1.10

necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

6. Start deploying the infrastructure.

occopus-build infra-dataavenue.yaml

7. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
dataavenue:

192.168.xxx.
→˓xxx (34b07a23-a26a-4a42-a5f4-73966b8ed23f)
storage:

192.168.xxx.
→˓xxx (29b98290-c6f4-4ae7-95ca-b91a9baf2ea8)

db0f0047-f7e6-428e-a10d-3b8f7dbdb4d4

8. On the S3 storage nodes a user with predefined parameters
will be created. The access_key will be the Username and
the secret_key will be the Password, which are predefined
in the infra-dataavenue.yaml file. Save user credentials
into a file named credentials use the above command:

echo -e 'X-Key: dataavenue-key\nX-Username:␣
→˓A8Q2WPCWAELW61RWDGO8\nX-Password:␣
→˓FWd1mccBfnw6VHa2vod98NEQktRCYlCronxbO1aQ
→˓' > credentials

Note: This step will be useful to shorten the curl commands
later when using DataAvenue!

9. Save the nodes’ ip addresses in variables to simplify the use
of commands.

export SOURCE_NODE_IP=[storage_a_ip]
export TARGET_NODE_IP=[storage_b_ip]
export DATAAVENUE_NODE_IP=[dataavenue_ip]

10. Make bucket on each S3 storage node:

curl -H "$(cat credentials)
→˓" -X POST -H "X-URI: s3://$SOURCE_NODE_
→˓IP:80/sourcebucket/" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory (continues on next page)

2.11. Building clusters 123

Occopus, Release v1.10

(continued from previous page)

curl -H "$(cat credentials)
→˓" -X POST -H "X-URI: s3://$TARGET_NODE_
→˓IP:80/targetbucket/" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory

Note: Bucket names should be at least three letter length.
Now, the bucket on the source S3 storage node will be
sourcebucket, and the bucket on the target S3 storage node
will be targetbucket.

11. Check the bucket creation by listing the buckets on each stor-
age node:

curl -H "$(cat credentials)" -H "X-URI: s3:/
→˓/$SOURCE_NODE_IP:80/" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory

The result should be: ["sourcebucket/"]

curl -H "$(cat credentials)" -H "X-URI: s3:/
→˓/$TARGET_NODE_IP:80/" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory

The result should be: ["targetbucket/"]

12. To test the DataAvenue file transfer software you should make
a file to be transfered. With this command you can create
predefined sized file, now it will be 1 megabyte:

dd if=/dev/urandom of=1MB.dat bs=1M count=1

13. Upload the generated 1MB.dat file to the source storage
node:

curl -H "
→˓$(cat credentials)" -X POST -H "X-URI: s3:/
→˓/$SOURCE_NODE_IP:80/sourcebucket/1MB.dat" -
→˓H 'Content-Type: application/octet-stream'␣
→˓--data-binary @1MB.dat http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/file

14. Check the uploaded file by listing the sourcebucket bucket
on the source node:

curl -H "$(cat␣
→˓credentials)" -H "X-URI: s3://$SOURCE_NODE_
→˓IP:80/sourcebucket" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory

The result should be: ["1MB.dat"]

1. Save the target node’s credentials to a target.json file to
shorten the copy command later:

124 Chapter 2. Acknowledgement

Occopus, Release v1.10

echo "{target:
→˓'s3://"$TARGET_NODE_IP":80/targetbucket/',
→˓overwrite:true,credentials:{Type:UserPass,
→˓ UserID:"A8Q2WPCWAELW61RWDGO8", UserPass:
→˓"FWd1mccBfnw6VHa2vod98NEQktRCYlCronxbO1aQ
→˓"}}" > target.json

2. Copy the uploaded 1MB.dat file from the source node to the
target node:

curl -H "$(cat credentials)" ␣
→˓-X POST -H "X-URI: s3://$SOURCE_NODE_IP:80/
→˓sourcebucket/1MB.dat" -H "Content-type:␣
→˓application/json" --data "$(cat target.
→˓json)" http://$DATAAVENUE_NODE_IP:8080/
→˓dataavenue/rest/transfers > transferid

The result should be: [transfer_id]

3. Check the result of the copy command by querying the
transfer_id returned by the copy command:

curl -H "$(cat credentials)
→˓" http://$DATAAVENUE_NODE_IP:8080/
→˓dataavenue/rest/transfers/$(cat transferid)

The following result means a successful copy transfer from
the source node to the target node (see status: DONE):

"bytesTransferred
→˓":1048576,"source":"s3://[storage_
→˓a_ip]:80/sourcebucket/1MB.dat","status
→˓":"DONE","serverTime":1507637326644,"target
→˓":"s3://[storage_b_ip]:80/targetbucket/
→˓1MB.dat","ended":1507637273245,
→˓"started":1507637271709,"size":1048576

4. You can list the files in the target node’s bucket, to check the
1MB file:

curl -H "$(cat␣
→˓credentials)" -H "X-URI: s3://$TARGET_NODE_
→˓IP:80/targetbucket" http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/directory

The result should be: ["1MB.dat"]. T

5. Also, you can download the copied file from the target node:

curl -H "$(cat credentials)" -H "X-URI:␣
→˓s3://$TARGET_NODE_IP:80/targetbucket/1MB.
→˓dat" -o download.dat http://$DATAAVENUE_
→˓NODE_IP:8080/dataavenue/rest/file

6. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

2.11. Building clusters 125

Occopus, Release v1.10

occopus-destroy␣
→˓-i db0f0047-f7e6-428e-a10d-3b8f7dbdb4d4

Note: In this tutorial we used HTTP protocol only. DataAv-
enue also supports HTTPS on port 8443; storages could also
be accessed over secure HTTP by deploying e.g. HAPROXY
on their nodes.

2.11.5 CQueue cluster

CQueue stands for “Container Queue”. Since Docker does
not provide pull model for container execution, (Docker
Swarm uses push execution model) the CQueue framework
provides a lightweight queueing service for executing con-
tainers.

Figure 1 shows, the overall architecture of a CQueue clus-
ter. The CQueue cluster contains one Master node (VM1)
and any number of Worker nodes (VM2). Worker nodes can
be manually scaled up and down with Occopus. The Master
node implements a queue (see “Q” box within VM1), where
each item (called task in CQueue) represents the specifica-
tion of a container execution (image, command, arguments,
etc.). The Worker nodes (VM2) fetch the tasks one after the
other and execute the container specified by the task (see “A”
box within VM2). In each task submission a new Docker
container will be launched within at CQueue Worker.

Please, note that CQueue is not aware of what happens in-
side the container, simply executes them one after the other.
CQueue does not handle data files, containers are responsi-
ble for downloading inputs and uploading results if neces-
sary. For each container CQueue stores the logs (see “DB”
box within VM1), and the return value. CQueue retries the
execution of failed containers as well.

In case the container hosts an application, CQueue can be
used for executing jobs, where each job is realized by one
single container execution. To use CQueue for huge number
of job execution, prepare your container and generate the list
of container execution in a parameter sweep style.

In this tutorial we deploy a CQueue cluster with two nodes:
1) a Master node (see VM1 on Figure 1) having a RabbitMQ
(for queuing) (see “Q” box within VM1), a Redis (for stor-
ing container logs) (see “DB” within VM1), and a web-based
frontend (for providing a REST API and a basic WebUI) com-
ponent (see “F” in VM1); 2) a Worker node (see VM2 on
Figure 1) containing a CQueue worker component (see “W”
box within VM2) which pulls tasks from the Master and per-
forms the execution of containers specified by the tasks (see
“A” box in VM2).

126 Chapter 2. Acknowledgement

Occopus, Release v1.10

Fig. 2: Figure 1. CQueue cluster architecture

There are three use-cases identified for using CQueue.

Use-case 1 (Container executation)

The first use-case uses Container executor, i.e. the applica-
tion container managed by the CQueue worker. After the ap-
plication container (task) finished, the result saved on the re-
sult backend. (Redis)

curl -H 'Content-Type: application/json'␣
→˓-X POST -d'{"image":"ubuntu", "cmd":["echo
→˓", "test msg"]}' http://localhost:8080/task

Use-case 2 (Local executation)

The second use-case runs the task in the worker container.
The container runs the given task, and after the execution,
the worker container saves the result to the result backend.

curl -H 'Content-Type: application/json
→˓' -X POST -d'{"type":"local", "cmd":["echo
→˓", "test msg"]}' http://localhost:8080/task

Note: If you like to use this method, it is necessary to build the CQueue worker in the application container.

Use-case 3 (Batch executation)

2.11. Building clusters 127

Occopus, Release v1.10

In this use-case, the application runs in the worker container
similarly to the second use-case, but it will define multiple
tasks. In this mode, CQueue is capable of creating an iter-
able parameter in the application with the syntax of {{.}}.
In this mode, it is necessary to define the start, and the stop
parameter and CQueue will iterate over it. This execution
mode can result in a very significant performance improve-
ment when the tasks running times are short.

curl -H 'Content-Type: application/
→˓json' -X POST -d'{"type":"batch", "start
→˓":"1" , "stop":"10", "cmd":["echo", "run␣
→˓{{.}}.cfg"]}' http://localhost:8080/task

Note: If you like to use this method, it is necessary to build the CQueue worker in the application container.

Note: To create a worker with batch capabilities, the worker must be started with --batch=true flag.

Features

• creating two types of nodes through contextualisation

• using the nova resource handler

• using parameters to scale up worker nodes

Prerequisites

• accessing an Occopus compatible interface

• target cloud contains an Ubuntu image with cloud-init sup-
port

Download

You can download the example as tutorial.examples.cqueue-
cluster .

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

Note: In this tutorial, we will use nova cloud resources
(based on our nova tutorials in the basic tutorial section).

128 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cqueue-cluster.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/cqueue-cluster.tar.gz

Occopus, Release v1.10

However, feel free to use any Occopus-compatible cloud re-
source for the nodes, but we suggest to instantiate all nodes
in the same cloud.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 5672 AMQP
TCP 6379 Redis server
TCP 8080 CQueue frontend
TCP 15672 RabbitMQ management

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Update the number of worker nodes if necessary. For this,
edit the infra-cqueue-cluster.yaml file and modify the
min and max parameter under the scaling keyword. Scaling is
the interval, in which the number of nodes can change (min,
max). Currently, the minimum is set to 1 (which will be the
initial number at startup).

- &W
name: cqueue-worker
type: cqueue-worker_node

scaling:
min: 1

Important: Important: Keep in mind that Occopus has to
start at least one node from each node type to work properly
and scaling can be applied only for worker nodes in this ex-
ample!

5. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

2.11. Building clusters 129

Occopus, Release v1.10

6. Start deploying the infrastructure.

occopus-build infra-cqueue-cluster.yaml

7. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
cqueue-worker:

192.168.xxx.
→˓xxx (34b07a23-a26a-4a42-a5f4-73966b8ed23f)
cqueue-master:

192.168.xxx.
→˓xxx (29b98290-c6f4-4ae7-95ca-b91a9baf2ea8)

db0f0047-f7e6-428e-a10d-3b8f7dbdb4d4

8. After a successful built, tasks can be sent to the CQueue mas-
ter. The framework is built for executing Docker contain-
ers with their specic inputs. Also, environment variables and
other input parameters can be specied for each container. The
CQueue master receives the tasks via a REST API and the
CQueue workers pull the tasks from the CQueue master and
execute them. One worker process one task at a time.

Push ‘hello world’ task (available parameters: image string,
env []string, cmd []string, container_name string):

curl -H␣
→˓'Content-Type: application/json' -X POST -
→˓d'{"image":"ubuntu", "cmd":["echo", "hello␣
→˓Docker"]}' http://<masterip>:8080/task

The result should be: ``{"id":"task_
→˓324c5ec3-56b0-4ff3-ab5c-66e5e47c30e9"}``

Note: This id (task_324c5ec3-56b0-4ff3-ab5c-
66e5e47c30e9) will be used later, in order to query its
status and result.

9. The worker continuously updates the status (pending, re-
ceived, started, retry, success, failure) of the task with the
task’s ID. After the task is completed, the workers send a not-
ication to the CQueue master, and this task will be removed
from the queue. The status of a task and the result can be
queried from the key-value store through the CQueue master.

Check the result of the push command by querying the
task_id returned by the push command:

130 Chapter 2. Acknowledgement

Occopus, Release v1.10

curl␣
→˓-X GET http://<masterip>:8080/task/$task_id

The result should be: {"status":"SUCCESS"}

1. Fetch the result of the push command by querying the
task_id returned by the push command:

curl -X GET␣
→˓http://<masterip>:8080/task/$task_id/result

The result should be: hello Docker

2. Delete the task with the following command:

curl -X␣
→˓DELETE http://<masterip>:8080/task/$task_id

3. For debugging, check the logs of the container at the CQueue
worker node.

docker logs -f $(containerID)

4. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i db0f0047-f7e6-428e-a10d-3b8f7dbdb4d4

Note: The CQueue master and the worker components are
written in golang, and they have a shared code-base. The
open-source code is available at GitLab .

2.12 Autoscaling infrastructures

2.12.1 Autoscaling-DataAvenue

This tutorial aims to demonstrate the scaling capabilities of
Occopus. With this solution applications can automatically
scale without user intervention in a predefined scaling range
to guarantee that the application always runs at the optimum
level of resources.

The tutorial builds a scalable architecture framework with the
help of Occopus and performs the automatic scaling of the
application based on Occopus and Prometheus (a monitoring
tool). The scalable architecture framework can be seen in
Figure 1.

The scalable architecture framework consists of the following
services:

1. Cloud orchestrator and manager: Occopus

2.12. Autoscaling infrastructures 131

https://gitlab.com/lpds-public/cqueue/-/tree/master

Occopus, Release v1.10

Fig. 3: Figure 1. Scalable architecture framework

2. Application node: Data Avanue (DA)

3. Service discovery: Consul

4. Load balancer: haproxy

5. Monitor: Prometheus

In this infrastructure, nodes are discovered by Consul, which
is a service discovery tool also providing DNS service
and are monitored by Prometheus, a monitoring software.
Prometheus supports alert definitions which later will help
you write custom scaling events.

In this autoscaling example we implemented a multi-layered
traditional load-balancing schema. On the upper layer, there
are load balancer nodes organised into a cluster and prepared
for scaling. The load balancer cluster is handling the load
generated by secured http transfer (https) between the client
and the underlying application. The application is also or-
ganised inside a scalable cluster to distribute the load gener-
ated by serving the client requests. In this demonstration ar-
chitecture, the Data Avenue (DA) service was selected to be
the concrete application. Notice that other applications can
easily replace the DA service and by changing the concrete
application the scalable architecture template can support a
large set of different applications. The DA service here im-
plements data transfer between the client and a remote stor-
age using various protocols (http, sftp, s3, . . .). For further
details about the software, please visit the Data Avenue web-
site . Finally, in the lowest layer there is a Database node (not shown in Figure 1) required by the instances of Data

132 Chapter 2. Acknowledgement

http://data-avenue.eu/en_GB/
http://data-avenue.eu/en_GB/

Occopus, Release v1.10

Avenue to store and retrieve information (authentication, statistics) for their operation.

The monitor service Prometheus collects runtime informa-
tion about the work of the DA services. If DA services
are overloaded Prometheus instructs Occopus to scale up the
number of DA services by deploying a new DA service in the
cloud. The new DA service will be attached and configured
the same way as it was done for the previously deployed DA
services. If the DA services are underloaded Prometheus in-
structs Occopus to scale down the number of DA services. (In
fact, the same scale up and down operations can be applied
for the load balancer services, too.)

In case, this architecture fits to your need, you may replace the
Data Avenue (with its Database node) with your own applica-
tion. As a result, you will have a multi-level load-balancing
infrastructure, where both load balancer nodes and applica-
tion servers are dynamically scaled up and down depending
on the load the corresponding cluster has.

Features

• using Prometheus to monitor nodes and create user-defined
scaling events

• using load balancers to share system load between data nodes

• using Consul as a DNS service discovery agent

• using data nodes running the application

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g. EC2, Azure, Nova, etc.)

• target cloud contains a base 14.04 ubuntu OS image with
cloud-init support (image id, instance type)

• start Occopus in Rest-API mode (occopus-rest-service)

Download

You can download the example as
tutorial.examples.autoscaling-dataavenue .

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the EC2 plugin.

2.12. Autoscaling infrastructures 133

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/autoscaling-dataavenue.tar.gz

Occopus, Release v1.10

2. Optionally, edit the infra_as_dataavenue.yaml infras-
tructure descriptor file. Set the following attributes:

• scaling is the interval in which the number of nodes can
change (min,max). You can change da and lb nodes or leave
them as they are.

- &DA_cluster # Node Running your application
name: da
type: da
scaling:
min: 1
max: 10

Important: Keep in mind that Occopus has to start at least
one node from each node type to work properly!

3. Optionally, you can edit the nodes/cloud_init_da.yaml
node descriptor file. If you wish, you can replace the ac-
tually implemented Grid Data Avenue webapplication with
your own one. Be careful, when modifying this example!

This autoscaling project scales the infrastructure over your
application while you can run any application on it. You have
to put your application code into the cloud_init_da.yaml file
and make sure it starts automatically when the node boots up.
This way every data node will run your application and load
balancers will share the load between them. This solution fits
to web applications serving high number of incoming http
requests.

Note: For detailed explanation on cloud-init and its usage,
please read the cloud-init documentation!

4. Optionally, edit the nodes/cloud_init_prometheus.
yaml node descriptor file’s “Prometheus rules” section in
case you want to implement new scaling rules. The actually
implemented rules are working well and can be seen below.

• {infra_id} is a built in Occopus variable and every alert
has to implement it in their Labels!

• node should be set to da or lb depending on which type of
node the alerts should work.

lb_cpu_utilization␣
→˓= 100 - (avg (rate(node_cpu{group=
→˓"lb_cluster",mode="idle"}[60s])) * 100)

da_cpu_utilization␣
→˓= 100 - (avg (rate(node_cpu{group=
→˓"da_cluster",mode="idle"}[60s])) * 100)

ALERT da_overloaded
(continues on next page)

134 Chapter 2. Acknowledgement

http://cloudinit.readthedocs.org/en/latest/topics/examples.html

Occopus, Release v1.10

(continued from previous page)

IF da_cpu_utilization > 50
FOR 1m
LABELS␣

→˓{alert="overloaded", cluster="da_cluster
→˓", node="da", infra_id="{{infra_id}}"}
ANNOTATIONS {
summary = "DA cluster overloaded",
description = "DA cluster average␣

→˓CPU/RAM/HDD utilization is overloaded"}
ALERT da_underloaded
IF da_cpu_utilization < 20
FOR 2m
LABELS␣

→˓{alert="underloaded", cluster="da_cluster
→˓", node="da", infra_id="{{infra_id}}"}
ANNOTATIONS {
summary = "DA cluster underloaded",
description = "DA cluster average␣

→˓CPU/RAM/HDD utilization is underloaded"}

Important: Autoscaling events (scale up, scale down) are
based on Prometheus rules which act as thresholds, let’s say
scale up if cpu usage > 80%. In this example you can see the
implementation of a cpu utilization in your da-lb cluster with
some threshold values. Please, always use infra_id in you
alerts as you can see below since Occopus will resolve this
variable to your actual infrastructure id. If you are planning
to write new alerts after you deployed your infrastructure, you
can copy the same infrastructure id to the new one. Also make
sure that the “node” property is set in the Labels subsection,
too. For more information about Prometheus rules and alerts,
please visit: https://prometheus.io/docs/alerting/rules/

5. Edit the “variables” section of the infra_as_dataavenue.
yaml file. Set the following attributes:

• occopus_restservice_ip is the ip address of the host
where you will start the occopus-rest-service

• occopus_restservice_port is the port you will bind the
occopus-rest-service to

occopus_restservice_ip: "127.0.0.1"
occopus_restservice_port: "5000"

6. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

2.12. Autoscaling infrastructures 135

https://prometheus.io/docs/alerting/rules/

Occopus, Release v1.10

Protocol Port(s) Service
TCP 22 SSH
TCP 8300 (Consul) TCP Server RPC. This is used by servers to handle incoming requests from

other agents.
TCP and
UDP

8301 (Consul) This is used to handle gossip in the LAN. Required by all agents.

TCP and
UDP

8302 (Consul) This is used by servers to gossip over the WAN to other servers.

TCP 8400 (Consul) CLI RPC. This is used by all agents to handle RPC from the CLI.
TCP 8500 (Consul) HTTP API. This is used by clients to talk to the HTTP API.
TCP and
UDP

8600 (Consul) DNS Interface. Used to resolve DNS queries.

TCP 8600 (Consul) DNS Interface. Used to resolve DNS queries.
TCP 9090 Prometheus
TCP 8080 Data Avenue
TCP 9093 Alertmanager

7. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

8. Load the node definitions into the database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

9. Start Occopus in REST service mode:

occopus-
→˓rest-service --host [occopus_restservice_
→˓ip] --port [occopus_restservice_port]

Use ip and port values as defined in the infrastructure de-
scription! Alternatively, use 0.0.0.0 for the host ip.

10. Start deploying the infrastructure through the Occopus ser-
vice:

curl -X POST␣
→˓http://[occopus_restservice_ip]:[occopus_
→˓restservice_port]/infrastructures/
→˓ --data-binary @infra_as_dataavenue.yaml

11. To test the down-scaling mechanism scale up manually the
da nodes through the occopus REST interface and after a few
minutes you can observe that the newly connected nodes will
be automatically removed because the underloaded alert is

136 Chapter 2. Acknowledgement

Occopus, Release v1.10

firing. You can also check the status of your alerts during the
testing at [PrometheusIP]:9090/alerts.

curl -X POST␣
→˓http://[occopus_restservice_ip]:[occopus_
→˓restservice_port]/infrastructures/
→˓[infrastructure_id]/scaleup/da

Important: Depending on the cloud you are using for you
virtual machines it can take a few minutes to start a new node
and connect it to your infrastructure. The connected nodes
are present on prometheus’s Targets page.

12. To test the up-scaling mechanism put some load on the data
nodes with the command below. Just select one of your LB
node and generate load on it with running the command be-
low in a few copy. After a few minutes the cluster will be
overloaded, the overloaded alerts will fire in Prometheus and
a new da node will be started and connected to your clus-
ter. Also, if you stop sending files for a while, the overloaded
alerts will fire in Prometheus and one (or more) of the da
nodes will be shut (scaled) down.

To query the nodes and their ip addresses, use this command:

curl -X GET http://[occopus_
→˓restservice_ip]:[occopus_restservice_
→˓port]/infrastructures/[infrastructure_id]

Once, you have the ip of the selected LB node, generate load
on it by transferring a 1GB file using the command below.
Do not forget to update the placeholder!

curl -k -o /dev/null -H "X-
→˓Key: 1a7e159a-ffd8-49c8-8b40-549870c70e73"␣
→˓-H "X-URI:https://autoscale.s3.lpds.sztaki.
→˓hu/files_for_autoscale/1GB.dat" http:/
→˓/[LB node ip address]/blacktop3/rest/file

To check the status of alerts under Prometheus during the test-
ing, keep watching the following url in your browser:

http://[prometheus node ip]:9090/alerts

Important: Depending on the cloud you are using for you
virtual machines it can take a few minutes to start a new node
and connect it to your infrastructure. The connected nodes
are present on prometheus’s Targets page.

13. Finally, you may destroy the infrastructure using the infras-
tructure id.

2.12. Autoscaling infrastructures 137

Occopus, Release v1.10

curl -X DELETE http://[occopus_
→˓restservice_ip]:[occopus_restservice_
→˓port]/infrastructures/[infra id]

2.12.2 Autoscaling-Hadoop cluster

This tutorial aims to demonstrate the scaling capabilities of
Occopus. With this solution applications can automatically
scale without user intervention in a predefined scaling range
to guarantee that the application always runs at the optimum
level of resources.

The tutorial builds a scalable Apache Hadoop infrastructure
with the help of Occopus and performs the automatic scaling
of the application based on Occopus and Prometheus (a mon-
itoring tool). It contains a Hadoop Master node and Hadoop
Slave worker nodes, which can be scaled up or down. To reg-
ister Hadoop Slave nodes Consul is used.

Features

• creating two types of nodes through contextualisation

• utilising health check against a predefined port

• using Prometheus to scale Hadoop Slaves automatically

• using Consul as a DNS service discovery agent

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g. EC2, Azure, Nova, etc.)

• target cloud contains a base 14.04 ubuntu OS image with
cloud-init support (image id, instance type)

• generated ssh key-pair (or for testing purposes one is at-
tached)

• start Occopus in Rest-API mode (occopus-rest-service)

Download

You can download the example as
tutorial.examples.autoscaling-hadoop.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

138 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/autoscaling-hadoop.tar.gz

Occopus, Release v1.10

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attributes!

Important: Do not specify the server_name attribute for
slaves so they are named automatically by Occopus to make
sure node names are unique!

Note: If you want Occopus to monitor (health_check) your
Hadoop Master and it is to be deployed in a different network,
make sure you assign public (floating) IP to the Master node.

2. Optionally, edit the nodes/cloud_init_hadoop_master.
yaml node descriptor file’s “Prometheus rules” section in
case you want to implement new scaling rules. The actually
implemented rules are working well and can be seen below.

• {infra_id} is a built in Occopus variable and every alert
has to implement it in their Labels!

hd_cpu_utilization␣
→˓= 100 - (avg (rate(node_cpu{group=
→˓"hd_cluster",mode="idle"}[60s])) * 100)
hd_ram_utilization = (sum(node_memory_
→˓MemFree{job="hd_cluster"}) / sum(node_
→˓memory_MemTotal{job="hd_cluster"})) * 100
hd_hdd_utilization␣
→˓= sum(node_filesystem_free{job="hd_
→˓cluster",mountpoint="/", device="rootfs"})␣
→˓/ sum(node_filesystem_size{job="hd_cluster
→˓",mountpoint="/", device="rootfs"}) *100

ALERT hd_overloaded
IF hd_cpu_utilization > 80
FOR 1m
LABELS {alert=

→˓"overloaded", cluster="hd_cluster", node=
→˓"hadoop-slave", infra_id="{{infra_id}}"}
ANNOTATIONS {
summary = "HD cluster overloaded",
description = "HD cluster␣

→˓average CPU utilization is overloaded"}
ALERT hd_underloaded
IF hd_cpu_utilization < 20
FOR 2m

(continues on next page)

2.12. Autoscaling infrastructures 139

Occopus, Release v1.10

(continued from previous page)

LABELS {alert=
→˓"underloaded", cluster="hd_cluster", node=
→˓"hadoop-slave", infra_id="{{infra_id}}"}
ANNOTATIONS {
summary = "HD cluster underloaded",
description = "HD cluster␣

→˓average CPU utilization is underloaded"}

Important: Autoscaling events (scale up, scale down) are
based on Prometheus rules which act as thresholds, let’s say
scale up if cpu usage > 80%. In this example you can see
the implementation of a cpu utilization in your Hadoop clus-
ter with some threshold values. Please, always use infra_id
in you alerts as you can see below since Occopus will re-
solve this variable to your actual infrastructure id. If you
are planning to write new alerts after you deployed your in-
frastructure, you can copy the same infrastructure id to the
new one. Also make sure that the “node” property is set
in the Labels subsection, too. For more information about
Prometheus rules and alerts, please visit: https://prometheus.
io/docs/alerting/rules/

3. Edit the “variables” section of the infra_as_hadoop.yaml
file. Set the following attributes:

• occopus_restservice_ip is the ip address of the host
where you will start the occopus-rest-service

• occopus_restservice_port is the port you will bind the
occopus-rest-service to

occopus_restservice_ip: "127.0.0.1"
occopus_restservice_port: "5000"

4. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 8025 (Hadoop) Resource Manager
TCP 8042 (Hadoop) NodeManager
TCP 8080 . . .
TCP 8088 (Hadoop) Resource Manager WebUI
TCP 8300-8600 . . .
TCP 9000 . . .
TCP 9090 . . .
TCP 9093 . . .
TCP 50000-51000 . . .

140 Chapter 2. Acknowledgement

https://prometheus.io/docs/alerting/rules/
https://prometheus.io/docs/alerting/rules/

Occopus, Release v1.10

5. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

6. Update the number of Hadoop Slave worker nodes if neces-
sary. For this, edit the infra-occopus-hadoop.yaml file
and modifiy the min and max parameter under the scaling
keyword. Scaling is the interval in which the number of nodes
can change (min, max). Currently, the minimum is set to 1
(which will be the initial number at startup), and the maxi-
mum is set to 10.

- &S
name: hadoop-slave
type: hadoop_slave_node
scaling:
min: 1
max: 10

Important: Important: Keep in mind that Occopus has to
start at least one node from each node type to work properly
and scaling can be applied only for Hadoop Slave nodes in
this example!

7. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

8. Start Occopus in REST service mode:

occopus-
→˓rest-service --host [occopus_restservice_
→˓ip] --port [occopus_restservice_port]

Use ip and port values as defined in the infrastructure de-
scription! Alternatively, use 0.0.0.0 for the host ip.

9. Start deploying the infrastructure through the Occopus ser-
vice:

curl -X POST␣
→˓http://[occopus_restservice_ip]:[occopus_
→˓restservice_ip]/infrastructures/
→˓ --data-binary @infra_as_hadoop.yaml

2.12. Autoscaling infrastructures 141

Occopus, Release v1.10

10. To test the down-scaling mechanism scale up manually the
da nodes through the occopus REST interface and after a few
minutes you can observe that the newly connected nodes will
be automatically removed because the underloaded alert is
firing. You can also check the status of your alerts during the
testing at [HaddopMasterIP]:9090/alerts.

curl -X POST␣
→˓http://[occopus_restservice_ip]:[occopus_
→˓restservice_ip]/infrastructures/
→˓[infrastructure_id]/scaleup/hadoop-slave

Important: Depending on the cloud you are using for you
virtual machines it can take a few minutes to start a new node
and connect it to your infrastructure. The connected nodes
are present on prometheus’s Targets page.

11. To test the up-scaling mechanism put some load on the
Hadoop Slave nodes. After a few minutes the cluster will
be overloaded, the overloaded alerts will fire in Prometheus
and a new Hadoop Slave node will be started and connected
to your cluster. Also, if you stop sending files for a while, the
overloaded alerts will fire in Prometheus and one (or more)
of the Hadoop Slave nodes will be shut (scaled) down.

To query the nodes and their ip addresses, use this command:

curl -X GET http://[occopus_
→˓restservice_ip]:[occopus_restservice_
→˓ip]/infrastructures/[infrastructure_id]

Once, you have the ip of the Hadoop Master node, generate
load on it by executing Hadoop MapRedcue jobs. To launch
a Hadoop MapReduce job copy your input and executable
files to the Hadoop Master node, and perform the submission
described here . To login to the Hadoop Master node use the
private key attached to the tutorial package:

ssh -i builtin_
→˓hadoop_private_key hduser@[HadoopMaster ip]

To check the status of alerts under Prometheus during the test-
ing, keep watching the following url in your browser:

• http://[HadoopMasterIP]:9090/alerts

Important: Depending on the cloud you are using for you
virtual machines it can take a few minutes to start a new node
and connect it to your infrastructure. The connected nodes
are present on prometheus’s Targets page.

12. You can check the health and statistics of the cluster through
the following web pages:

142 Chapter 2. Acknowledgement

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Occopus, Release v1.10

• Health of nodes: http://[HadoopMasterIP]:50070

• Job statistics: http://[HadoopMasterIP]:8088

13. Finally, you may destroy the infrastructure using the infras-
tructure id.

curl -X DELETE␣
→˓http://[occopus_restservice_ip]:[occopus_
→˓restservice_ip]/infrastructures/[infra id]

2.13 Flowbster

2.13.1 Autodock vina

In this case we have used Flowbster to set up the infrastruc-
ture for processing the Vina workflow. The setup is as fol-
lows: one VM is acting as the Generator, 5 VMs are acting
as Vina processing nodes, and finally one VM is acting as the
Collector node.

The application used to execute the performance measure-
ments was a workflow based on the AutoDock Vina applica-
tion. The workflow consists of three nodes: a Generator, a
set of Vina processing nodes, and a Collector. The input of
the workflow includes the followings: a receptor molecule, a
Vina configuration file, and a set of molecules to dock against
the receptor molecule.

The task of the generator node is to split the set of molecules
to dock into a number of parts. The task of the Vina nodes is
to process this parts, iterating through each molecule in the
given part, by performing the docking simulation. The result
of the docking includes an energy level, finally the user is
interested in the docking with the lowest energy level.

The task of the Collector node is to get the processing result
of each molecule part from the Vina nodes, and select the
best 5 energy levels.

For running the experiment, we selected a molecule set of
60 molecules. This set was split into 10 parts, so each part
included 6 molecules to dock against the receptor molecule.

Features

• creating nodes through contextualisation

• using the ec2 resource handler

• utilising health check against a predefined port and url

• using parameters to scale up worker nodes

Prerequisites

• accessing an Occopus compatible interface

2.13. Flowbster 143

Occopus, Release v1.10

• target cloud contains an Ubuntu 14.04 image with cloud-init
support

Download

You can download the example as
tutorial.examples.flowbster-autodock-vina .

Steps

The following steps are suggested to be performed:

1. Open the file nodes/node_definitions.yaml and edit
the resource section of the flowbster_node labelled by
node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the ec2 plugin.

2. Make sure your authentication information is set correctly in
your authentication file. You must set your email and pass-
word in the authentication file. Setting authentication infor-
mation is described here.

3. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc.). Make
sure you implement port opening in your cloud for the follow-
ing port:

Protocol Port(s) Service
TCP 5000 This is used by nodes to handle incoming requests from other agents

4. Please note that in order to receive the results, you have to
run a Gather service (part of Flowbster), which will finally
gather the results (the docking simulations with the lowest
energy levels) from the Collector (last node in the workflow).
Start the Gather service using the following command:

scripts/flowbster-gather.sh -s

By default the Gather service is listening on port 5001.

Note: The scripts in the scripts directory need Python 2.7.
Alternatively you can activate the Occopus virtualenv!

144 Chapter 2. Acknowledgement

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/flowbster-autodock-vina.tar.gz

Occopus, Release v1.10

5. Edit the “variables” section of the infra-autodock-vina.yaml
file. Set the following attributes:

• gather_ip is the ip address of the host where you have
started the Gather service

• gather_port is the port of the Gather service is listening on

gather_ip: &gatherip "<External IP␣
→˓of the host executing the Gather service>"
gather_port: &gatherport "5001"

6. Update the number of VINA nodes if necessary. For this, edit
the infra-autodock-vina.yaml file and modify the min
parameter under the scaling keyword. Currently, it is set to
5.

- &VINA
name: VINA
type: flowbster_node
scaling:

min: 5

7. Load the node definition for flowbster_node nodes into the
database.

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition (file) changes!

occopus-import nodes/node_definitions.yaml

8. Start deploying the infrastructure. Make sure the proper vir-
tualenv is activated!

occopus-build infra-autodock-vina.yaml

9. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
VINA:
<ip-address>

→˓ (2f7d3d7e-c90c-4f33-831d-91e987e8e8b2)
<ip-address>

→˓ (49bed8d2-94b0-4a7e-9672-744921dacac0)
<ip-address>

→˓ (10664026-0b31-4848-9f7a-98f880f98be7)
<ip-address>

→˓ (a0f5d091-aecc-488c-94f2-34e546f87832)
(continues on next page)

2.13. Flowbster 145

Occopus, Release v1.10

(continued from previous page)

<ip-address>
→˓ (285d7efd-84a7-4ed5-a6fa-73db47bc2e87)
COLLECTOR:
<ip-address>

→˓ (4ca11ad3-a6ec-411b-89e6-d516169df9c7)
GENERATOR:
<ip-address>

→˓ (9b8dc4f1-bed4-4d1c-ba9e-45c18ee2523d)
30bc1d09-8ed5-4b7e-9e51-24ed881fc166

10. Once the infrastructure is ready, the input files can be
sent to the Generator node of the workflow (check the ad-
dress of the node at the end of the output of the occopus-
build command). Using the following command in the
flowbster-autodock-vina/inputs directory:

../scripts/flowbster-feeder.sh -h <ip␣
→˓of GENERATOR node> -i input-description-
→˓for-vina.yaml -d input-ligands.zip␣
→˓-d input-receptor.pdbqt -d vina-config.txt

The -h parameter is the Generator node’s address, -i is the
input description file and with -d we can define data file(s).

Note: The scripts in the scripts directory need Python 2.7.
Alternatively you can activate the Occopus virtualenv!

Note: It may take a quite few minutes until the processes
end. Please, be patient!

11. With step 10, the data processing was started. The whole
processing time depends on the overall performance of the
VINA nodes. VINA nodes process 10 molecule packages,
which are collected by the Collector node. You can check
the progress of processing on the Collector node by check-
ing the number of files under /var/flowbster/jobs/<id
of workflow>/inputs directory. When the number of files
reaches 10, Collector node combines them and sends one
package to Gather node which stores it under directory /tmp/
flowbster/results.

12. Once you finished processing molecules, you may stop the
Gather service:

scripts/flowbster-gather.sh -d

13. Finally, you can destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 30bc1d09-8ed5-4b7e-9e51-24ed881fc166

146 Chapter 2. Acknowledgement

Occopus, Release v1.10

Note: You can run a bigger application, with more input files. This application will run for approximately 4 hours with
5 VINA nodes. Edit Generator node’s variables section in the infra-autodock-3node.yaml file. Set the jobflow/
app/args variable 10 to 240 and repeat the tutorial using the input2 directory. For running this experiment, we
selected a molecule set of 3840 molecules. This set will be splitted into 240 parts, so each part included 16 molecules
to dock against the receptor molecule.

nodes:
- &GENERATOR

name: GENERATOR
type: flowbster_node
variables:

flowbster:
app:

exe:
filename: execute.bin
tgzurl:␣

→˓https://github.com/occopus/flowbster/raw/
→˓devel/examples/vina/bin/generator_exe.tgz

args: '240'

2.14 Big Data and AI applications

2.14.1 Apache Hadoop cluster

This tutorial sets up a complete Apache Hadoop (version
3.3.0) infrastructure. It contains a Hadoop Master node and
Hadoop Slave worker nodes, which can be scaled up or down.
To register Hadoop Slave nodes Consul is used.

Features

• creating two types of nodes through contextualisation

• utilising health check against a predefined port

• using scaling parameters to limit the number of Hadoop Slave
nodes

• manage cluster nodes with Consul

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains a base Ubuntu OS image with cloud-init
support

Download

You can download the example as tutorial.examples.hadoop-
cluster .

2.14. Big Data and AI applications 147

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/hadoop-cluster.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/hadoop-cluster.tar.gz

Occopus, Release v1.10

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes
in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attributes!

Important: Do not specify the server_name attribute for
slaves so they are named automatically by Occopus to make
sure node names are unique!

Note: If you want Occopus to monitor (health_check) your
Hadoop Master and it is to be deployed in a different network,
make sure you assign public (floating) IP to the Master node.

2. Components in the infrastructure connect to each other,
therefore several port ranges must be opened for the VMs
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 8025
TCP 8042
TCP 8088
TCP 8300-8600
TCP 9000
TCP 50000-51000

148 Chapter 2. Acknowledgement

Occopus, Release v1.10

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Update the number of Hadoop Slave worker nodes if neces-
sary. For this, edit the infra-occopus-hadoop.yaml file
and modifiy the min and max parameter under the scaling
keyword. Scaling is the interval in which the number of nodes
can change (min, max). Currently, the minimum is set to 2
(which will be the initial number at startup), and the maxi-
mum is set to 10.

- &S
name: hadoop-slave
type: hadoop_slave_node
scaling:

min: 2
max: 10

Important: Important: Keep in mind that Occopus has to
start at least one node from each node type to work properly
and scaling can be applied only for Hadoop Slave nodes in
this example!

5. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

6. Start deploying the infrastructure.

occopus-build infra-hadoop-cluster.yaml

7. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
hadoop-master:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
hadoop-slave:

(continues on next page)

2.14. Big Data and AI applications 149

Occopus, Release v1.10

(continued from previous page)

192.168.xxx.
→˓xxx (23f13bd1-25e7-30a1-c1b4-39c3da15a456)

192.168.xxx.
→˓xxx (7b387348-b3a3-5556-83c3-26c43d498f39)

14032858-d628-40a2-b611-71381bd463fa

8. You can check the health and statistics of the cluster through
the following web pages:

• Health of nodes: http://[HadoopMasterIP]:9870

• Job statistics: http://[HadoopMasterIP]:8088

9. To launch a Hadoop MapReduce job copy your input and ex-
ecutable files to the Hadoop Master node, and perform the
submission described here.

10. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.14.2 Apache Spark cluster with RStudio
Stack

This tutorial sets up a complete Apache Spark (version 3.0.1)
infrastructure with HDFS (Hadoop Distributed File System)
(version 3.3.0) and RStudio server. Apache Spark is a fast
and general-purpose cluster computing system. It provides
high-level APIs in Java, Scala, Python and R, and an opti-
mized engine that supports general execution graphs. It also
supports a rich set of higher-level tools including Spark SQL
for SQL and structured data processing, MLlib for machine
learning, GraphX for graph processing, and Spark Streaming.
For more information visit the official Apache Spark page .

Apache Spark cluster together with HDFS (Hadoop Dis-
tributed File System) represents one of the most important
tool for Big Data and machine learning applications, enabling
the parallel processing of large data sets on many virtual
machines, which are running Spark workers. On the other
hand, setting up a Spark cluster with HDFS on clouds is not
straightforward, requiring deep knowledge of both cloud and
Apache Spark architecture. To save this hard work for scien-
tists we have created and made public the required infrastruc-
ture descriptors by which Occopus can automatically deploy
Spark clusters with the number of workers specified by the
user. One of the most typical application area of Big Data
technology is the statistical data processing that is usually
done by the programming language R. In order to facilitate
the work of statisticians using Spark on cloud, we have cre-
ated an extended version of the Spark infrastructure descrip-

150 Chapter 2. Acknowledgement

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://spark.apache.org

Occopus, Release v1.10

tors placing the sparklyr library on Spark workers, too. Finally, we have also integrated the user-friendly RStudio user
interface into the Spark system. As a result, researchers using the statistical R package can easily and quickly deploy
a complete R-oriented Spark cluster on clouds containing the following components: RStudio, R, sparklyr, Spark and
HDFS.

This tutorial sets up a complete Apache Spark infrastructure
integrated with HDFS, R, RStudio and sparklyr. It contains
a Spark Master node and Spark Worker nodes, which can be
scaled up or down.

Features

• creating two types of nodes through contextualisation

• utilising health check against a predefined port

• using scaling parameters to limit the number of Spark Worker
nodes

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains a base Ubuntu OS image with cloud-init
support

Download

You can download the example as tutorial.examples.spark-
cluster-with-r .

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes
in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attributes!

2.14. Big Data and AI applications 151

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/spark-cluster-with-r.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/spark-cluster-with-r.tar.gz
clouds.html
createinfra.html#resource
createinfra.html#resource
createinfra.html#collecting-resource-attributes
createinfra.html#collecting-resource-attributes
tutorial-resource-plugins.html
tutorial-resource-plugins.html

Occopus, Release v1.10

Important: Do not specify the server_name attribute for
workers so they are named automatically by Occopus to make
sure node names are unique!

Note: If you want Occopus to monitor (health_check) your
Spark Master and it is to be deployed in a different network,
make sure you assign public (floating) IP to the Master node.

2. Generally speaking, a Spark cluster and its services are not
deployed on the public internet. They are generally private
services, and should only be accessible within the network of
the organization that deploys Spark. Access to the hosts and
ports used by Spark services should be limited to origin hosts
that need to access the services. This means that you need
to create a firewall rule to allow all traffic between Spark
nodes and the required ports [web UI and job submission
port(s)] should be allowed only from your IP address.

Main UI port list:

Port Description
4040 Application port (active only if a Spark application is running)
6066 Submit job to cluster via REST API
7077 Submit job to cluster/Join to the cluster
8080 Master UI
8081 Worker UI
9870 HDFS NameNode UI

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Update the number of Spark Worker nodes if necessary. For
this, edit the infra-occopus-spark.yaml file and modifiy
the min and max parameter under the scaling keyword. Scal-
ing is the interval in which the number of nodes can change
(min, max). Currently, the minimum is set to 2 (which will
be the initial number at startup), and the maximum is set to
10.

- &W
name: spark-worker
type: spark_worker_node
scaling:

min: 2
max: 10

Important: Important: Keep in mind that Occopus has to
start at least one node from each node type to work properly

152 Chapter 2. Acknowledgement

Occopus, Release v1.10

and scaling can be applied only for Spark Worker nodes in
this example!

5. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

6. Start deploying the infrastructure.

occopus-build infra-spark-cluster.yaml

7. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
spark-master:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
spark-worker:

192.168.xxx.
→˓xxx (23f13bd1-25e7-30a1-c1b4-39c3da15a456)

192.168.xxx.
→˓xxx (7b387348-b3a3-5556-83c3-26c43d498f39)

14032858-d628-40a2-b611-71381bd463fa

8. You can check the health and statistics of the cluster through
the following web pages:

• HDFS NameNode UI: http://<SparkMasterIP>:9870

• Spark UI: http://<SparkMasterIP>:8080

• Spark Application UI: http://<SparkMasterIP>:4040
(active only if a Spark application is running)

Note: The webUIs are protected, the access needs a login.
The default username/password is spark/lpds, which can be
changed before deployment.

9. Testing RStudio

2.14. Big Data and AI applications 153

Occopus, Release v1.10

The RStudio’s web interface can be access via
http://<SparkMasterIP>:8787, logging with the
sparkuser/lpds username/password pair.

9.1. Testing R package

install.packages('txtplot')
library('txtplot')
txtplot(cars[,1], cars[,
→˓2], xlab = "speed", ylab = "distance")

In this test, we download an R package, called “txtplot” from
CRAN , load it to R and then draw an XY plot.

9.2. Testing R with Spark on local mode

install.packages("sparklyr")
library(sparklyr)
Sys.setenv(SPARK_
→˓HOME = '/home/sparkuser/spark')
sc <- spark_connect(master = "local")
sdf_len(sc, 5, repartition = 1) %>%
spark_apply(function(e) I(e))
spark_disconnect_all()

In this test, we download the “sparklyr” package for Spark,
load it into R, enter the path to our Spark directory, and create
the Spark Context to run the code. When the Spark Context is
created, our application is also displayed on the Application
UI interface under Running Applications, available at http:
// <SparkMasterIP>: 4040. An active Spark Context session
can also be found on the interface of RStudio, in the upper
right corner, under the “Connections” tab, the Spark logo ap-
pears with the configurations of Spark Context.

Note: Downloading new packages may take a few minutes.

The result of the test are numbers listed from 1 to 5. This
test shows that the Spark Master ran with Spark R. The last
line closes the application, otherwise Spark Context will run
forever and a new application would not get new resources.
(see Figure 1.)

9.3. Testing R with Spark on cluster mode

install.packages("sparklyr")
library(sparklyr)
Sys.setenv(SPARK_
→˓HOME = '/home/sparkuser/spark')
sc <- spark_connect(master␣
→˓= "spark://<SparkMasterIP>:7077")
sdf_len(sc, 5, repartition = 1) %>%

(continues on next page)

154 Chapter 2. Acknowledgement

https://cran.r-project.org

Occopus, Release v1.10

Fig. 4: Figure 1. Result of the first test

(continued from previous page)

spark_apply(function(e) I(e))
spark_disconnect_all()

The first three rows are the same as those of the second test,
but we have repeated them for the sake of completeness. In
this test, we download the “sparklyr” package required to use
Spark, load it into R, enter the path of our Spark directory
and create the Spark Context to run the code.

Note: Downloading new packages may take a few minutes.

Important: Do not forget to update placeholders.

When the Spark Context is created, the application is also
displayed on the Application UI interface under Running Ap-
plications available at http: // <SparkMasterIP>: 4040.

An active Spark Context session can also be seen on the RStu-
dio interface, in the upper right corner, under the “Connec-
tions” tab, the Spark logo appears with the configurations of
Spark Context, now with the Spark Master IP address.

The test results are the same, numbers listed 1 through 5 (see
Figure 1). This test shows that in the Spark cluster, the task
was run in parallel, distributed along with R. The last line
closes the application, otherwise Spark Context will run in-
definitely, so the new application will not get new resources.

Note: For more example visit spark.rstudio.com .

10. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

2.14. Big Data and AI applications 155

https://https://spark.rstudio.com/examples/

Occopus, Release v1.10

Fig. 5: Figure 2. Spark Context session on RStudio UI

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.14.3 Apache Spark cluster with Jupyter
notebook and PySpark

This tutorial sets up a complete Apache Spark (version 3.0.1)
infrastructure with HDFS (Hadoop Distributed File System)
(version 3.3.0) and PySpark. Apache Spark is a fast and
general-purpose cluster computing system. It provides high-
level APIs in Java, Scala, Python and R, and an optimized
engine that supports general execution graphs. It also sup-
ports a rich set of higher-level tools including Spark SQL
for SQL and structured data processing, MLlib for machine
learning, GraphX for graph processing, and Spark Streaming.
For more information visit the official Apache Spark page .

Apache Spark cluster together with HDFS (Hadoop Dis-
tributed File System) represents one of the most important
tool for Big Data and machine learning applications, enabling
the parallel processing of large data sets on many virtual
machines, which are running Spark workers. On the other
hand, setting up a Spark cluster with HDFS on clouds is not
straightforward, requiring deep knowledge of both cloud and
Apache Spark architecture. To save this hard work for scien-
tists we have created and made public the required infrastruc-
ture descriptors by which Occopus can automatically deploy
Spark clusters with the number of workers specified by the
user. Spark also provides a special library called “Spark ML-
lib” for supporting machine learning applications. Similarly,
to the R-oriented Spark environment, we have developed the
infrastructure descriptors for the creation of a machine learn-
ing environment in the cloud. Here, the programming lan-
guage is Python and the user programming environment is Jupyter. The complete machine learning environment con-
sists of the following components: Jupyter, Python, Spark and HDFS. Deploying this machine learning environment is
also automatically done by Occopus and the number of Spark workers can be defined by the user.

This tutorial sets up a complete Apache Spark infrastructure

156 Chapter 2. Acknowledgement

https://spark.apache.org

Occopus, Release v1.10

integrated with HDFS, Python and Jupyter Notebook. It con-
tains a Spark Master node and Spark Worker nodes, which
can be scaled up or down.

Features

• creating two types of nodes through contextualisation

• utilising health check against a predefined port

• using scaling parameters to limit the number of Spark Worker
nodes

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains a base Ubuntu OS image with cloud-init
support

Download

You can download the example as tutorial.examples.spark-
cluster-with-python .

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes
in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attributes!

Important: Do not specify the server_name attribute for
workers so they are named automatically by Occopus to make
sure node names are unique!

2.14. Big Data and AI applications 157

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/spark-cluster-with-python.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/spark-cluster-with-python.tar.gz

Occopus, Release v1.10

Note: If you want Occopus to monitor (health_check) your
Spark Master and it is to be deployed in a different network,
make sure you assign public (floating) IP to the Master node.

2. Generally speaking, a Spark cluster and its services are not
deployed on the public internet. They are generally private
services, and should only be accessible within the network of
the organization that deploys Spark. Access to the hosts and
ports used by Spark services should be limited to origin hosts
that need to access the services.

This means that you need to create a firewall rule to allow all
traffic between Spark nodes and the required ports [web
UI and job submission port(s)] should be allowed only from
your IP address.

Main UI port list:

Port Description
4040 Application port (active only if a Spark application is running)
6066 Submit job to cluster via REST API
7077 Submit job to cluster/Join to the cluster
8080 Master UI
8081 Worker UI
9870 HDFS NameNode UI

1. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

2. Update the number of Spark Worker nodes if necessary. For
this, edit the infra-occopus-spark.yaml file and modifiy
the min and max parameter under the scaling keyword. Scal-
ing is the interval in which the number of nodes can change
(min, max). Currently, the minimum is set to 2 (which will
be the initial number at startup), and the maximum is set to
10.

- &W
name: spark-worker
type: spark_worker_node
scaling:

min: 2
max: 10

Important: Important: Keep in mind that Occopus has to
start at least one node from each node type to work properly
and scaling can be applied only for Spark Worker nodes in
this example!

3. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

158 Chapter 2. Acknowledgement

Occopus, Release v1.10

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure.

occopus-build infra-spark-cluster.yaml

5. After successful finish, the nodes with ip address and
node id are listed at the end of the logging messages and
the identifier of the newly built infrastructure is printed. You
can store the identifier of the infrastructure to perform fur-
ther operations on your infra or alternatively you can query
the identifier using the occopus-maintain command.

List of nodes/ip addresses:
spark-master:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)
spark-worker:

192.168.xxx.
→˓xxx (23f13bd1-25e7-30a1-c1b4-39c3da15a456)

192.168.xxx.
→˓xxx (7b387348-b3a3-5556-83c3-26c43d498f39)

14032858-d628-40a2-b611-71381bd463fa

Note: After Occopus finished the infrastructure, the Worker
instance takes some time to finish the deployment process via
cloud-init.

6. You can check the health and statistics of the cluster through
the following web pages:

• HDFS NameNode UI: http://<SparkMasterIP>:9870

• Spark UI: http://<SparkMasterIP>:8080

• Spark Application UI: http://<SparkMasterIP>:4040
(active only if a Spark application is running)

Note: The webUIs are protected, the access needs a login.
The default username/password is spark/lpds, which can be
changed before deployment.

7. Testing with Jupyter Notebook

The Jupyter notebook’s web interface can be access via
http://<SparkMasterIP>:8888. Here, you can upload

2.14. Big Data and AI applications 159

Occopus, Release v1.10

and run Jupyter notebooks and try out the prepared demo
notebook.

Note: The webUIs are protected, the access needs a login.
The default password is “lpds”, which can be changed before
deployment.

8. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.14.4 TensorFlow and Keras with Jupyter
Notebook Stack

Note: This Occopus-based version is now deprecated in favor of the TensorFlow-JupyterLab Reference Architecture
based on Terraform and Ansible.

TensorFlow is an end-to-end open source platform for ma-
chine learning. It has a comprehensive, flexible ecosystem of
tools, libraries and community resources that lets researchers
push the state-of-the-art in ML and developers easily build
and deploy ML powered applications. TensorFlow was de-
veloped by the Google Brain team for internal Google use.
It was released under the Apache License 2.0 on November
9, 2015. For more information visit the official TensorFlow
page .

Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or
Theano. It was developed with a focus on enabling fast ex-
perimentation. Being able to go from idea to result with the
least possible delay is key to doing good research. Keras con-
tains numerous implementations of commonly used neural-
network building blocks such as layers, objectives, activation
functions, optimizers, and a host of tools to make working
with image and text data easier. In addition to standard neural
networks, Keras has support for convolutional and recurrent
neural networks. It supports other common utility layers like
dropout, batch normalization, and pooling. For more infor-
mation visit the official Keras page .

The complete machine learning environment consists of the
following components: Jupyter, Keras (version 2.2.4) and
TensorFlow (version 1.13.1).

Features

• creating a node through contextualisation

• utilising health check against a predefined port

160 Chapter 2. Acknowledgement

https://git.sztaki.hu/science-cloud/reference-architectures/tensorflow-jupyterlab
https://tensorflow.org/
https://tensorflow.org/
https://keras.io

Occopus, Release v1.10

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains a base Ubuntu OS image with cloud-init
support

Download

You can download the example as
tutorial.examples.tensorflow-keras-jupyter .

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes
in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attribute!

Note: If you want Occopus to monitor (health_check) your
initiated virtual machine and it is to be deployed in a differ-
ent network, make sure you assign public (floating) IP to the
node.

2. Services on the virtual machine should be available from out-
side, therefore some port numbers must be opened for the VM
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 8888 Jupyter Notebook

2.14. Big Data and AI applications 161

https://raw.githubusercontent.com/occopus/docs/devel/tutorials/tensorflow-keras-jupyter.tar.gz

Occopus, Release v1.10

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

5. Start deploying the infrastructure.

occopus-build infra-jupyter-server.yaml

6. After successful finish, the node with ip address and node
id is listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
jupyter-server:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)

14032858-d628-40a2-b611-71381bd463fa

7. You can start using the TensorFlow/Keras stack through the
Jupyter notebook using your web browster at the following
URL:

• Jupyter notebook: http://<JupyterServerIP>:8888

Note: The webUIs are protected, the access needs a login.
The default password is “lpds”, which can be changed before
deployment.

8. Run a demo ML application. Select tensorflow-
demo/TensorFlowDemoWithPictures.ipynb file within
the Jupyter notebook interface, and select Cells/Run All to
run all of the commands below, or use shift+enter within a
cell to run the cells one-by-one.

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa (continues on next page)

162 Chapter 2. Acknowledgement

Occopus, Release v1.10

(continued from previous page)

2.14.5 TensorFlow 2 with JupyterLab
Stack using NVIDIA GPU card

Note: This Occopus-based version is now deprecated in favor of the TensorFlow-JupyterLab Reference Architecture
based on Terraform and Ansible.

TensorFlow is an end-to-end open source platform for ma-
chine learning. It has a comprehensive, flexible ecosystem of
tools, libraries and community resources that lets researchers
push the state-of-the-art in ML and developers easily build
and deploy ML powered applications. TensorFlow was de-
veloped by the Google Brain team for internal Google use.
It was released under the Apache License 2.0 on November
9, 2015. For more information visit the official TensorFlow
page .

The complete machine learning environment consists of the
following components: JupyterLab and TensorFlow 2 utiliz-
ing the power of a GPU card.

Important: If you want to use this tutorial, your virtual machine should have an attached NVIDIA GPU
card. If you would like to alter the CUDA driver, feel free to personalize the install-cuda.sh script within
nodes/cloud_init_jupyter_server_gpu.yaml file.

Features

• creating a node through contextualisation

• utilising health check against a predefined port

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains a base Ubuntu 20.04 OS image with
cloud-init support and Docker CE

Download

You can download the example as
tutorial.examples.tensorflow-jupyter-gpu .

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes
in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

2.14. Big Data and AI applications 163

https://git.sztaki.hu/science-cloud/reference-architectures/tensorflow-jupyterlab
https://tensorflow.org/
https://tensorflow.org/
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/tensorflow-jupyter-gpu.tar.gz

Occopus, Release v1.10

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attribute!

Note: Make sure you assign public (floating) IP to the node.

2. Services on the virtual machine should be available from out-
side, therefore some port numbers must be opened for the VM
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 8888 Jupyter Notebook

3. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

4. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

5. Start deploying the infrastructure.

occopus-build infra-tensorflow.yaml

6. After successful finish, the node with ip address and node
id is listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store

164 Chapter 2. Acknowledgement

Occopus, Release v1.10

the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/ip addresses:
jupyter-server-gpu:

192.168.xxx.
→˓xxx (3116eaf5-89e7-405f-ab94-9550ba1d0a7c)

14032858-d628-40a2-b611-71381bd463fa

7. You can start using the TensorFlow/Keras stack through the
Jupyter notebook using your web browster at the following
URL:

• Jupyter notebook: `http://<JupyterServerIP>:8888`

Note: The webUIs are protected, the access needs a login.
The default password is “tensorflow”, which can be changed
before deployment.

8. Run a demo TensorFlow notebook .

Select beginner.ipynb file (see Figure 1) within the Jupyter-
Lab interface, and select Cells/Run All to run all of the com-
mands below, or use shift+enter within a cell to run the cells
one-by-one.

9. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

2.14.6 JupyterLab

Note: This Occopus-based version is now deprecated in favor of the JupyterLab Reference Architecture based on
Terraform and Ansible.

The Jupyter Notebook is an open-source web application that
allows you to create and share documents that contain live
code, equations, visualizations and narrative text. Uses in-
clude: data cleaning and transformation, numerical simula-
tion, statistical modeling, data visualization, machine learn-
ing, and much more. The notebook extends the console-
based approach to interactive computing in a qualitatively
new direction, providing a web-based application suitable for

2.14. Big Data and AI applications 165

https://www.tensorflow.org/tutorials/quickstart/beginner
https://git.sztaki.hu/science-cloud/reference-architectures/jupyterlab

Occopus, Release v1.10

Fig. 6: Figure 1: Jupyter Notebook for testing TensorFlow 2 environment with GPU

166 Chapter 2. Acknowledgement

Occopus, Release v1.10

capturing the whole computation process: developing, docu-
menting, and executing code, as well as communicating the
results.

The Jupyter Notebook combines two components:

• A web application: a browser-based tool for interactive au-
thoring of documents which combine explanatory text, math-
ematics, computations and their rich media output.

• Notebook documents: a representation of all content visible
in the web application, including inputs and outputs of the
computations, explanatory text, mathematics, images, and
rich media representations of objects.

For more information on Jupyter Notebooks, visit the official
documentation of Jupyter Notebook.

JupyterLab is the next-generation web-based user interface
for Project Jupyter, it’s a web-based interactive development
environment for Jupyter notebooks, code, and data. Jupyter-
Lab is flexible: configure and arrange the user interface to
support a wide range of workflows in data science, scientific
computing, and machine learning. JupyterLab is extensible
and modular: write plugins that add new components and in-
tegrate with existing ones.

Compared to the classical web user interface where users
can manage Jupyter Notebooks (available at http://
<JupyterLabIP>:8888/tree) JupyterLab (available at
http://<JupyterLabIP>:8888/lab) provides a more
modern user interface where users can install extensions to
satisfy their needs and improve their productivity using the
Extension Manager.

For more information on how to use the JupyterLab web-
based user interface, visit the official documentation of
JupyterLab.

Features

• creating a node through contextualisation

• utilising health check against a predefined port

Prerequisites

• accessing a cloud through an Occopus-compatible interface
(e.g EC2, Nova, Azure, etc.)

• target cloud contains an Ubuntu 18.04 image with cloud-init
support

Download

You can download the example as tutori-
als.examples.jupyterlab .

Note: In this tutorial, we will use nova cloud resources (based on our nova tutorials in the basic tutorial section).
However, feel free to use any Occopus-compatible cloud resource for the nodes, but we suggest to instantiate all nodes

2.14. Big Data and AI applications 167

https://jupyter-notebook.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/latest/
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/jupyterlab.tar.gz
https://raw.githubusercontent.com/occopus/docs/devel/tutorials/jupyterlab.tar.gz

Occopus, Release v1.10

in the same cloud.

Steps

1. Open the file nodes/node_definitions.yaml and edit the
resource section of the nodes labelled by node_def:.

• you must select an Occopus compatible resource plugin

• you can find and specify the relevant list of attributes for the
plugin

• you may follow the help on collecting the values of the at-
tributes for the plugin

• you may find a resource template for the plugin in the re-
source plugin tutorials

The downloadable package for this example contains a re-
source template for the Nova plugin.

Important: For the JupyterLab extensions to work properly,
the recommended resources are VCPU:2, RAM:4GB

Important: Do not modify the values of the contextualisa-
tion and the health_check section’s attribute!

Note: If you want Occopus to monitor (health_check) your
initiated virtual machine and it is to be deployed in a differ-
ent network, make sure you assign public (floating) IP to the
node.

2. Open the file nodes/infra-jupyterlab.yaml and edit the
variables section labelled by variables. The default user-
name is “jovyan” and the default password is “lpds”. Change
the value of pwd_jupyterlab to a safe password!

Important: Make sure the default password is changed, because the JupyterLab environment is exposed publicly on
the Internet and anyone with access to the password could execute arbitrary code on the underlying virtual machine
with root privileges!

1. Services on the virtual machine should be available from out-
side, therefore some port numbers must be opened for the VM
executing the components. Clouds implement port opening
various way (e.g. security groups for OpenStack, etc). Make
sure you implement port opening in your cloud for the fol-
lowing port ranges:

Protocol Port(s) Service
TCP 22 SSH
TCP 8888 Jupyter Notebook

168 Chapter 2. Acknowledgement

Occopus, Release v1.10

2. Make sure your authentication information is set correctly in
your authentication file. You must set your authentication
data for the resource you would like to use. Setting au-
thentication information is described here.

3. Load the node definitions into the database. Make sure the
proper virtualenv is activated!

Important: Occopus takes node definitions from its
database when builds up the infrastructure, so importing is
necessary whenever the node definition or any imported (e.g.
contextualisation) file changes!

occopus-import nodes/node_definitions.yaml

4. Start deploying the infrastructure.

occopus-build infra-jupyterlab.yaml

5. After successful finish, the node with ip address and node
id is listed at the end of the logging messages and the identi-
fier of the newly built infrastructure is printed. You can store
the identifier of the infrastructure to perform further opera-
tions on your infra or alternatively you can query the identi-
fier using the occopus-maintain command.

List of nodes/instances/addresses:
jupyterlab:

3116eaf5-89e7-405f-ab94-9550ba1d0a7c
192.168.xxx.xxx

14032858-d628-40a2-b611-71381bd463fa

6. You can start using JupyterLab using your web browster at
the following URL:

• JupyterLab: http://<JupyterLabIP>:8888

Note: The JupyterLab web user interface is password
protected, enter the password that was set in nodes/
infra-jupyterlab.yaml

7. Finally, you may destroy the infrastructure using the infras-
tructure id returned by occopus-build

occopus-destroy␣
→˓-i 14032858-d628-40a2-b611-71381bd463fa

Always use virtualenv for
any kind of deployment (test-
ing, building, production, . . .
everything). This ensures
there will be no dependency

2.14. Big Data and AI applications 169

Occopus, Release v1.10

issues: deployment collisions,
missing dependencies in re-
leases, etc. See the virtualenv
site for details.

2.15 Build envi-
ronment

Important: We primarily support Ubuntu operating system. The following instruction steps were tested on Ubuntu
20.04 version.

There are only a few system-
wide packages needed:

sudo apt update && \
sudo apt install -y␣
→˓python3-pip python3-
→˓dev virtualenv redis-
→˓server libssl-dev

Git submodules can be used to
clone and manage all reposito-
ries at once:

git clone https:/
→˓/github.com/occopus/
→˓master.git github-
→˓occo --recursive
cd github-occo
git submodule foreach␣
→˓git checkout devel

Most scripts included in these
components rely on this ex-
act directory structure (espe-
cially testing and documenta-
tion dependencies).

There is a Vagrantfile to boot-
strap the Occopus environ-
ment. After checkout just sim-
ply execute vagrant up and
the virtual machine (created by

VirtualBox) should be correctly set up on your machine.

One should work on an Occopus component in a virtualenv. The following shows how to setup the api repo. By doing
this the occopus- commands will appear and work correctly.

170 Chapter 2. Acknowledgement

https://virtualenv.pypa.io
https://virtualenv.pypa.io

Occopus, Release v1.10

cd github-occopus
cd api
./reset-env.sh
source env/occopus/bin/activate

To try the occopus- commands, go to the Tutorial section of the Users’ Guide and follow the instructions. There you
will find examples prepared for different cloud backends and you can have proper configuration very fast. Users’ Guide
can be found at the Occopus Website. Alternatively, you can go to the docs reporisory and find examples under the
tutorial directory.

Virtualenvs should be placed in the env/ directory, so they don’t linger in the working tree. gitwill ignore the contents
of the env/ directory so virtualenvs will not be commited accidentally.

2.16 Packaging and deployment

Occopus is split into several Python packages. The packages can be made available on the LPDS internal PyPI server
(or package index) as Python wheels.

The internal PyPI server at the time of writing is on 192.168.155.11. It is accessible through an Apache proxy
using the pip3.lpds.sztaki.hu hostname.

Pip can use the following switches to use this package index:

pip --trusted-host pip3.lpds.sztaki.hu --find-links http://pip3.lpds.sztaki.hu/packages -
→˓-no-index

The packages must be versioned according to the Semantic Versioning standard.

Development should be done using locally checked out Occopus packages instead of using package dependencies.
The requirements_test.txt files rely on local dependencies (pip install -e ...) to encourage this. This is to
avoid uploading too many useless package versions to the package index.

In each repository there is a package.sh which generates the wheels to be published. upload.sh will upload the
output package to the pip3.lpds.sztaki.hu, provided the uploader has root access to it.

2.16.1 Managing the internal PyPI server

All dependencies can be found in this index. Future dependencies can be added to the index thus:

ssh ubuntu@192.168.155.11
cd /opt/packages/
pip download pymongo==2.8 # For example

This will download the new dependency from the community servers and installs (caches) it on the internal PyPI server.
Locally mirroring and maintaining all used packages in an organization is a common practive anyway.

2.16. Packaging and deployment 171

http://occopus.lpds.sztaki.hu
http://pythonwheels.com/
http://semver.org/

Occopus, Release v1.10

2.16.2 Dependency Manifests

There are three dependency manifests to be maintained in each package.

setup.py

Used by pip, this module contains package information, including dependencies.

The dependencies declared here are abstract (versionless) dependencies, declaring only the
relations among packages.

requirements.txt

Used for deployment, this text contains the real dependencies of the package, including version
constraints.

This file will be used by the users of Occopus, so it must contain package names as references
and no source information (cf. requirements_test.txt).

This file should contain strict kinds of version specifications (== or possibly ~>), specifying the
dependencies against which the package has been tested and verified.

requirements_test.txt

This file specifies the packages needed to test the package. This includes nosetests, and the
current package itself (as a modifiable reference: -e .).

Unlike requirements.txt, this file references other Occopus packages as local, modifiable
repositories (e.g. -e ../util). This helps the coding-testing cycle as modifications to other
packages will be immediately “visible”, without reinstallation.

This file contains the source of the packages (LPDS internal PyPI server) hard-coded.

This file must contain == type version specifications so the testing results are deterministic and
reliable.

2.16.3 Creating Packages

The packages can be generated with the package.sh script in each package’s directory. This script creates and pre-
pares an empty virtualenv and uses pip wheel to generate wheels. While building the new wheel, it gathers all its
dependencies too, so the resulting wheelhouse directory will be a self-contained set of packages that can be vendored.
This script relies on the internal PyPI server to gather the dependencies.

2.16.4 Vendoring Packages

The generated wheel packages can be uploaded to the internal PyPI server using the upload.sh script in each package’s
directory. It uploads everything found in the wheelhouse directory generated by package.sh. This is redundant, as
the dependencies already exist on the server, but this makes the upload script dead simple.

When a package is uploaded, its version should be bumped unless it is otherwise justified.

172 Chapter 2. Acknowledgement

https://nose.readthedocs.org

Occopus, Release v1.10

2.16.5 Packages (in a topological order)

This is one possible topological ordering of the packages; i.e., they can be built/tested/deployed in this order.

Only interdependencies are annotated here, dependencies on external packages are omitted.

Table 1: OCCO-Util
Depends –
Repository https://github.com/occopus/util.git
Description

Generic utility functions, configuration,
communication,
etc. See: occo.util.

Testing

The virtualenv must be bootstrapped by executing
occo_test/bootstrap_tests.sh.

Table 2: OCCO-Compiler
Depends OCCO-Util
Repository https://github.com/occopus/compiler.git
Description

Compiler module for OCCO. See: occo.compiler.

Table 3: OCCO-InfoBroker
Depends OCCO-Util
Repository https://github.com/occopus/info-broker.git
Description

Information broker for the OCCO system.
See: occo.infobroker.

Table 4: OCCO-Enactor
Depends OCCO-Util, OCCO-Compiler, OCCO-InfoBroker
Repository https://github.com/occopus/enactor.git
Description

Active component of the OCCO infrastructure
maintenance
system. See: occo.enactor.

2.16. Packaging and deployment 173

https://github.com/occopus/util.git
https://github.com/occopus/compiler.git
https://github.com/occopus/info-broker.git
https://github.com/occopus/enactor.git

Occopus, Release v1.10

Table 5: OCCO-InfraProcessor
Depends OCCO-Util, OCCO-InfoBroker
Repository https://github.com/occopus/infra-processor.git
Description

Central processor and synchronizer of the OCCO
system. See:
occo.infraprocessor.

Table 6: OCCO-ResourceHandler
Depends OCCO-Util, OCCO-InfoBroker
Repository https://github.com/occopus/resource-handler.git
Description

Backend component of the OCCO system, responsible
for handling specific kinds of resources. See
occo.resourcehandler.

Table 7: OCCO-ConfigManager
Depends OCCO-Util, OCCO-InfoBroker
Repository https://github.com/occopus/config-manager.git
Description

Responsible for provisioning, setting up, configuring,
etc.
the nodes instantiated by the resource handler.

Table 8: OCCO-API
Depends all OCCO packages
Repository https://github.com/occopus/api.git
Description

This package combines the primitives provided by
other occo
packages into higher level services and features. This
package is intended to be the top-level package of the
Occopus
system upon which use-cases, user interfaces can be
built.

174 Chapter 2. Acknowledgement

https://github.com/occopus/infra-processor.git
https://github.com/occopus/resource-handler.git
https://github.com/occopus/config-manager.git
https://github.com/occopus/api.git

Occopus, Release v1.10

2.17 API

2.17.1 Basic features for Occopus-based applications

Common functions of a generic Occopus app.

This module can be used to implement OCCO-based applications in a unified way. The module provides features for
command-line and file based configuration of an Occopus application, and other generic features.

There are two ways to build an Occopus application.

1. The components provided by Occopus can be used as simple librares: they can be imported and glued together
with specialized code, a script.

2. The other way is to use this module as the core of such an application. This module can build an Occopus archi-
tecture based on the contents of a YAML config file. (Utilizing the highly dynamic nature of YAML compared
to other markup languages.)

The setup function expects a config file either through its cfg_path parameter, or it will try to get the path from the
command line, or it will try some default paths (see occo.util.config.config for specifics). See the documentation of
setup for details.

data occo.api.occoapp.args = None

Arguments parsed by argparse or an occo.util.config class.

data occo.api.occoapp.configuration = None

Configuration data loaded from the file(s) specified with --cfg.

data occo.api.occoapp.infrastructure = None

The OCCO infrastructure defined in the configuration.

func occo.api.occoapp.setup(setup_args=None, cfg_path=None, auth_data_path=None)

Build an Occopus application from configuration.

Parameters:

• setup_args (function) – A function that accepts an argparse.ArgumentParser object. This function
can set up the argument parser as needed (mainly: add command line arguments).

• cfg_path (str) – Optional. The path of the configuration file. If unspecified, other sources will be used
(see occo.util.config.config for details).

2.17.1.1 Occopus Configuration

Occopus uses YAML as a configuration language, mainly for its dynamic properties, and its human readability. The
parsed configuration is a dictionary, containing both static parameters and objects already instantiated (or executed,
sometimes!) by the YAML parser.

The configuration must contain the following items.

logging The logging configuration dictionary that will be used with logging.config.dictConfig to setup logging.

components The components of the Occopus architecture that’s need to be built.

resourcehandler The ResourceHandler instance (singleton) to be used by other components (e.g. the InfraPro-
cessor. Multiple backends can be supported by using a basic occo.resourcehandler.ResourceHandler in-
stance here configured with multiple backend clouds/resources.

2.17. API 175

Occopus, Release v1.10

configmanager The ConfigManager instance (singleton) to be used by other components (e.g. the InfraProces-
sor. Multiple backends can be supported by using a basic occo.resourcehandler.ConfigManager instance
here configured with multiple backend service composers (This feature is not yet implemented at the time
of writing.).

uds The storage used by this Occopus application.

2.17.2 Infrastructure Manager

Occopus Infrastructure Manager

class

occo.api.manager.InfrastructureManager(process_strategy='sequential')

Manages a set of infrastructures. Each submitted infrastructure is assigned an InfrastructureMaintenanceProcess
that maintains it. Compiling + storing the infrastructure is decoupled from starting provisioning. This enables
the manager to attach to existing, but not provisioned infrastructures. I.e., if the manager fails, it can be restarted
and reattached to previously submitted infrastructures.

Parameters: process_strategy (str) – The identifier of the processing strategy for Infrastructure Processor

method

add(infra_desc) Compile, store, and start provisioning the given infrastructure. A simple composition of
submit_infrastructure and start_provisioning. Parameters: infra_desc – An infrastructure description.

attach(infra_id) Start provisioning an existing infrastructure.

Parameters: infra_id (str) – The identifier of the infrastructure. The infrastructure must be already
compiled and stored in the UDS.

detach(infra_id) Stop provisioning an existing infrastructure.

Parameters: infra_id (str) – The identifier of the infrastructure. The infrastructure must be already
compiled and stored in the UDS.

get(infra_id) Get the managing process of the given infrastructure.

Parameters: infra_id (str) – The identifier of the infrastructure. Raises InfrastructureIDNot-
FoundException: if the infrastructure is not managed.

start_provisioning(infra_id) Start provisioning the given infrastructure. An InfrastructureMaintenance-
Process is created for the given infrastructure. This process is then stored in a process table so it can be
managed. This method can be used to attach the manager to infrastructures already started and having
a state in the database.

Parameters: infra_id (str) – The identifier of the infrastructure. The infrastructure must be already
compiled and stored in the UDS. Raises InfrastructureIDTakenException: when the infrastructure
specified is already being managed.

stop_provisioning(infra_id, wait_timeout=60) Stop provisioning the given infrastructure. The manag-
ing process of the infrastructure is terminated gracefully, so the infrastructure stops being maintained;
the manager is detached from the infrastructure. The infrastructure itself will not be torn down.

Parameters: infra_id (str) – The identifier of the infrastructure. Raises InfrastructureIDNot-
FoundException: if the infrastructure is not managed.

submit_infrastructure(infra_desc) Compile the given infrastructure and stores it in the UDS.

Parameters: infra_desc – An infrastructure description.

176 Chapter 2. Acknowledgement

Occopus, Release v1.10

tear_down(infra_id) Tear down an infrastructure. This method tears down a running, but unmanaged in-
frastructure. For this purpose, an Infrastructure Processor is created, so this method does not rely on the
Enactor’s ability (non-existent at the time of writing) to tear down an infrastructure. If the infrastruc-
ture is being provisioned (the manager is attached), this method will fail, and not call stop_provisioning
implicitly.

Parameters: infra_id (str) – The identifier of the infrastructure. Raises ValueError: if the infrastruc-
ture is being maintained by this manager. Call stop_provisioning first, explicitly.

occo.api.manager.InfrastructureMaintenanceProcess(infra_id, enactor_interval=10,␣
→˓process_strategy='sequential')

A process maintaining a single infrastructure. This process consists of an Enactor, and the corresponding Infras-
tructure Processor. The Enactor is instructed to make a pass at given intervals.

Parameters: infra_id (str) – The identifier of the already submitted infrastructure.
enactor_interval (float) – The number of seconds to elapse between Enactor passes.
process_strategy (str) – The identifier of the processing strategy for Infrastructure
Processor

2.18 Develop documentation

This guide aims to help you get familiar with the Occopus documentation part.

2.18.1 Creating documentation environment locally

To set up a documentation environment you need to have a Python3 installation with installed Spinx and
sphinx_rtd_theme package.

The documentation tested with the following versions:

• Sphinx - 3.0.3

• sphinx_rtd_theme - 0.4.3

To create a local documentation environment just follow the steps (Debian-based OS):

sudo apt update && sudo apt install -y python3-pip virtualenv
virtualenv -p python3 ./venv/docs
source venv/docs/bin/activate
git clone https://github.com/occopus/docs.git -b devel
pip install -r docs/sphinx/requirements.txt
cd docs/sphinx/
make html

Note: It is recommended to use virtual environment however you can continue without it.

Now you can easily build your own documentation with make html command under docs/sphinx/ path. After the
process finished, you can find the built documentation under docs/sphinx/build.

2.18. Develop documentation 177

Occopus, Release v1.10

2.18.2 Visualize local build

For testing purposes you can install nginx and host your documentation. The following steps will help you to do that:

sudo apt update && sudo apt install -y nginx
sudo sed -i "s/^ root/ root \/home\/ubuntu\/docs\/sphinx\/build\/html\;/g"␣
→˓\
/etc/nginx/sites-available/default
the sed part could be different in different OS. If it does not work, just replace the␣
→˓root
line with your docs location
sudo service nginx restart

After these steps, you can look at the documentation under: http://[Your_IP_Address]/

Danger: Nginx config is not a valid production ready config! Use only for testing purposes! If you are able to
do that do not expose it to the public (use local network if it is possible).

2.18.3 Helper scripts

Under the documentation repository, there is helperScripts folder with two different helper scripts. It provides quick
automation of different tasks.

2.18.3.1 createTarFileFromTutorials.sh

This script creates a tar.gz file from every directory from docs/tutorials. It is important to run this script when you
modify the description in the tutorials folder. The tar.gz file requires to make tutorials downloadable through hosted
documentation (Read the Docs) via raw GitHub URL.

2.18.3.2 updateAbsoluteGithubLinksToChangeBranch.sh

This script aids to help change the GitHub branch absolute path easily through a semi-automated way. The script
requires two arguments. First argument is the current branch and the second argument is the target branch.

The script looks through the following path, and modify the branch if needed:

• /sphinx/source/*.rst

• /tutorials/

Usually, there are two common usages but you can modify as you wish:

This way the script change every master branch reference to the devel branch.

$./updateAbsoluteGithubLinksToChangeBranch.sh master devel

The other way does the opposite. The script change every devel branch reference to the master branch.

$./updateAbsoluteGithubLinksToChangeBranch.sh devel master

178 Chapter 2. Acknowledgement

Occopus, Release v1.10

2.18.4 Read the Docs build

Every tag creates a new version for the Occopus documentation site. Occopus documentation is hosted by Read the
Docs (RTD) at the URL: https://occopus.readthedocs.io.

The master branch defines the lastest tag in RTD which is considered as the stable version of the documentation. Each
releases of the master branch is compiled and shown by RTD as versions.

Actual version of the devel branch is also continuesly refreshed by RTD and shown under a hidden (/devel) URL.
Optionally, it can be built privately on your local machine as described in sections Creating documentation environment
locally and Visualize local build.

If there is a new tag or commit in master or devel branch in Occopus Docs repository RTD will rebuild the whole
documentation. After a while the documentation will be available with the changes through the documentation URL.

2.18. Develop documentation 179

https://occopus.readthedocs.io

	What is Occopus?
	Acknowledgement
	Concept
	Features
	Supported Resources
	EC2
	Nova
	Azure
	CloudBroker
	Docker
	CloudSigma

	Setup
	Installation
	Configuration
	Authentication

	Composing an infrastructure
	Infrastructure Description
	Node Description
	Node Definition
	Resource
	EC2
	Nova
	Azure
	Azure ACI
	CloudBroker
	Docker
	CloudSigma

	Collecting Resource Attributes
	Amazon (EC2)
	Cloudbroker
	CloudSigma
	OpenStack Horizon (Nova)

	Contextualisation
	Cloudinit
	Docker

	Contextualisation variables and methods
	Contextualization plugins
	Cloud-init plugin
	Jinja2 templating
	General rules
	How/where to define own variables
	How/where to refer to own variables
	Enable/disable jinja syntax
	System level constants and methods

	Config management
	Chef
	Puppet-solo

	Health-check
	Ping
	Ports
	Urls
	MysqlDBs
	Timeout

	Multiple node implementations
	Examples

	Usage
	Command line tools
	occopus-build
	occopus-destroy
	occopus-maintain
	occopus-scale
	occopus-import
	occopus-rest-service

	REST API
	POST /infrastructures/
	GET /infrastructures/
	POST /infrastructures/(infraid)/scaledown/(nodename)/(nodeid)
	POST /infrastructures/(infraid)/scaleup/(nodename)/(int: count)
	POST /infrastructures/(infraid)/scaleto/(nodename)/(int: count)
	POST /infrastructures/(infraid)/scaledown/(nodename)
	POST /infrastructures/(infraid)/scaleup/(nodename)
	POST /infrastructures/(infraid)/attach
	POST /infrastructures/(infraid)/detach
	POST /infrastructures/(infraid)/notify
	GET /infrastructures/(infraid)
	DELETE /infrastructures/(infraid)

	Python API

	Release Notes
	v1.10 (30 Nov 2021)
	v1.9 (25 May 2021)
	v1.8 (17 Aug 2020)
	v1.7 (30 Apr 2020)
	v1.6 (05 Apr 2019)
	v1.5 (23 May 2017)
	v1.4 (27 March 2017)
	v1.3 (09 January 2017)
	v1.2 (11 August 2016)
	v1.1 (5 June 2016)
	v1.0 (6 April 2016)
	v0.3.0 (15 Jan 2016)
	v0.2.1 (10 Nov 2015)
	v0.2.0 (4 Nov 2015)

	Contact Us
	Resource plugins
	EC2-Helloworld
	EC2-Ping
	Nova-Helloworld
	Nova-Ping
	Azure-Helloworld
	Azure-Ping
	Azure-ACI-Helloworld
	Azure-ACI-Nginx
	Docker-Helloworld
	Docker-Ping
	CloudSigma-Helloworld
	CloudSigma-Ping
	CloudBroker-Helloworld
	CloudBroker-Ping

	Config manager plugins
	Chef-Apache2
	Chef-Wordpress
	PuppetSolo-Wordpress

	Building clusters
	Docker-Swarm cluster
	Kubernetes cluster
	Slurm cluster
	DataAvenue cluster
	CQueue cluster

	Autoscaling infrastructures
	Autoscaling-DataAvenue
	Autoscaling-Hadoop cluster

	Flowbster
	Autodock vina

	Big Data and AI applications
	Apache Hadoop cluster
	Apache Spark cluster with RStudio Stack
	Apache Spark cluster with Jupyter notebook and PySpark
	TensorFlow and Keras with Jupyter Notebook Stack
	TensorFlow 2 with JupyterLab Stack using NVIDIA GPU card
	JupyterLab

	Build environment
	Packaging and deployment
	Managing the internal PyPI server
	Dependency Manifests
	Creating Packages
	Vendoring Packages
	Packages (in a topological order)

	API
	Basic features for Occopus-based applications
	Occopus Configuration

	Infrastructure Manager

	Develop documentation
	Creating documentation environment locally
	Visualize local build
	Helper scripts
	createTarFileFromTutorials.sh
	updateAbsoluteGithubLinksToChangeBranch.sh

	Read the Docs build

